Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 176: 116862, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850656

ABSTRACT

Problems, such as toxic side effects and drug resistance of chemoradiotherapy, target therapy and immunotherapy accompanying the current anti-cancer treatments, have become bottlenecks limiting the clinical benefit for patients. Therefore, it is urgent to find promising anti-cancer strategies with higher efficacy and lesser side effects. Baicalein, a flavonoid component derived from the Chinese medicine scutellaria baicalensis, has been widely studied for its remarkable anti-cancer activity in multiple types of malignancies both at the molecular and cellular levels. Baicalein exerts its anti-tumor effects by inhibiting angiogenesis, invasion and migration, inducing cell apoptosis and cell cycle arrest, as well as regulating cell autophagy, metabolism, the tumor microenvironment and cancer stem cells with no obvious toxic side effects. The role of classic signaling pathways, such as PI3K/AKT/mTOR, MAPK, AMPK, Wnt/ß-catenin, JAK/STAT3, MMP-2/-9, have been highlighted as the major targets for baicalein exerting its anti-malignant potential. Besides, baicalein can regulate the relevant non-coding RNAs, such as lncRNAs, miRNAs and circ-RNAs, to inhibit tumorigenesis and progression. In addition to the mentioned commonalities, baicalein shows some specific anti-tumor characteristics in some specific cancer types. Moreover, the preclinical studies of the combination of baicalein and chemoradiotherapy pave the way ahead for developing baicalein as an adjunct treatment with chemoradiotherapy. Our aim is to summary the role of baicalein in different types of cancer with its mechanisms based on in vitro and in vivo experiments, hoping providing proof for baicalein serving as an effective and safe compound for cancer treatment in clinic in the future.


Subject(s)
Flavanones , Neoplasms , Humans , Flavanones/pharmacology , Flavanones/therapeutic use , Animals , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Signal Transduction/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Tumor Microenvironment/drug effects
2.
Phytomedicine ; 125: 155351, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232540

ABSTRACT

BACKGROUND: Autophagy, a cellular process involving lysosomal self-digestion, plays a crucial role in recycling biomolecules and degrading dysfunctional proteins and damaged organelles. However, in non-small cell lung cancer (NSCLC), cancer cells can exploit autophagy to survive metabolic stress and develop resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), which reduce treatment efficacies. Currently, most studies have found that late-stage autophagy inhibitors can hinder EGFR-TKIs resistance, while research on early-stage autophagy inhibitors is still limited. PURPOSE: This study investigates the mechanism via which the Xie-Bai-San (XBS) formula enhances NSCLC cell sensitivity to gefitinib, revealing the relationship between XBS-induced cell death and the inhibition of autophagosome formation. METHODS: Cell viability was assessed using CCK-8 and EdU assays, lentivirus transfection was utilized to generate PC9 cells harboring the PIK3CA E545K mutation (referred to as PC9-M), autophagic flux was monitored using mCherry-GFP-LC3 adenovirus. Protein expression and colocalization were observed through immunofluorescence staining. The interaction between Bcl-2 and Beclin-1 in PC9-GR and PC9-M cells was determined via co-immunoprecipitation (Co-IP) assay, cell apoptosis was assessed by flow cytometry and PI staining, and overall survival analysis of lung adenocarcinoma patients was conducted using the TCGA database. In vivo experiments included a patient-derived xenograft (PDX) model with EGFR and PIK3CA mutations and subcutaneous mice xenografts of NSCLC cell lines (PC9 and PC9-GR). In addition, autophagic vesicles in mouse tumor tissues were observed via transmission electron microscopy analysis. RESULTS: XBS effectively inhibits the proliferation of gefitinib-resistant NSCLC cells and induces apoptosis both in vitro and in vivo. Mechanistically, XBS suppresses gefitinib-induced autophagic flux by inhibiting autophagy through the upregulation of p-mTOR and Bcl-2 and downregulation of Beclin-1. Additionally, XBS enhances the interaction between Bcl-2 and Beclin-1, and the overexpression of Beclin-1 promotes NSCLC cell proliferation and counteracts XBS-induced cell death, while XBS demonstrates minimal impact on autophagosome-lysosome fusion or lysosome function. CONCLUSION: This study reveals a novel role for the XBS formula in impeding autophagy initiation and demonstrates its potential as a candidate drug to counteract autophagy-induced treatment resistance in NSCLC.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/pathology , Gefitinib/pharmacology , Beclin-1 , Lung Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Autophagosomes , ErbB Receptors/metabolism , Quinazolines/pharmacology , Protein Kinase Inhibitors/pharmacology , Drug Resistance, Neoplasm , Apoptosis , Proto-Oncogene Proteins c-bcl-2 , Cell Line, Tumor
3.
BMC Cancer ; 23(1): 732, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37553597

ABSTRACT

Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutation often obtain de novo resistance or develop secondary resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs), which restricts the clinical benefit for the patients. The activation of phosphatidylinositol 3-kinase (PI3K)/AKT signal pathway is one of the most important mechanisms for the EGFR-TKIs resistance beyond T790M mutation. There are currently no drugs simultaneously targeting EGFR and PI3K signal pathways, and combination of these two pathway inhibitors may be a possible strategy to reverse theses resistances. To test whether this combinational strategy works, we investigated the therapeutic effects and mechanisms of combining BYL719, a PI3Kα inhibitor, with gefitinib, an EGFR-TKI inhibitor in EGFR-TKIs resistance NSCLC models induced by PI3K/AKT activation. Our results demonstrated that PIK3CA mutated cells showed increased growth rate and less sensitive or even resistant to gefitinib, associated with increased PI3K/AKT expression. The combination of BYL719 and gefitinib resulted in synergistic effect compared with the single agents alone in EGFR-mutated NSCLC cells with PI3K/AKT activation. The inhibition of AKT phosphorylation by BYL719 increased the antitumor efficacy of gefitinib in these cell lines. Moreover, the combined effect and mechanism of gefitinib and BYL719 were also confirmed in the NSCLC cells and patient-derived organoids under 3D culture condition, as well as in vivo. Taken together, the data indicate that PIK3CA mutation induces more aggressive growth and gefitinib resistance in NSCLC cells, and the combination treatment with gefitinib and BYL719 is a promising therapeutic approach to overcoming EGFR-TKIs resistance induced by PI3K/AKT activation.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Gefitinib/pharmacology , Gefitinib/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , ErbB Receptors , Lung Neoplasms/pathology , Phosphatidylinositol 3-Kinase/genetics , Quinazolines/pharmacology , Quinazolines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Drug Resistance, Neoplasm , Cell Line, Tumor , Mutation
4.
Front Pharmacol ; 13: 1044115, 2022.
Article in English | MEDLINE | ID: mdl-36467048

ABSTRACT

NSCLC (non-small cell lung cancer) is one of the most common and lethal malignant tumors, with low 5-year overall survival rate. Curcumol showed antitumor activity in several cancers, but evidence about its effect on NSCLC remains unclear. In the present study, we found that Curcumol markedly inhibited NSCLC cells proliferation, migration and invasion. Endothelial cells are an important part of tumor microenvironment. Tube formation assay and wound healing assay indicated that A549 derived conditioned medium affected HUVECs (human umbilical vein endothelial cells). Mechanistically, Curcumol downregulated the expression of SP1 (specificity protein 1) while upregulated miR-125b-5p, followed by decreasing VEGFA expression in NSCLC cells. Furthermore, overexpression of SP1 partially reversed the inhibitory effect of Curcumol on A549 and H1975 cell viability and VEGFA expression. Inhibition of miR-125b-5p presented similar effect. Interestingly, there was mutual modulation between SP1 and miR-125b-5p. Collectively, our study revealed that Curcumol inhibited cell growth and angiogenesis of NSCLC in vitro and in vivo, possibly through SP1/miR-125b-5p/VEGFA regulatory mechanism. These findings may provide effective therapy strategies for NSCLC treatment.

5.
J Ethnopharmacol ; 283: 114456, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34333105

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hepatocellular carcinoma (HCC) is a liver malignancy which lacks effective treatment and has a poor prognosis. ß-Elemene refers to a natural Curcuma wenyujin-derived single molecular entity, which exhibits various biological activities, and is especially well-known for it's antitumor properties. AIM OF THE RESEARCH: LncRNA HOTAIR, SP1, and PDK1 have displayed oncogenic roles in many tumors, participating in the initiation and progression of cancers by mediating multiple signaling pathways. However, there are only a few reports about their roles and mutual relationship in the growth of HCC cells. Therefore, this study aimed to investigate the expression of LncRNA HOTAIR, SP1, and PDK1 and their interaction with ß-Elemene in HCC cells. MATERIALS AND METHODS: MTT, a Colony formation assay, and flow cytometry were employed to evaluate the growth of HCC and LO2 cells under ß-Elemene. LncRNA HOTAIR, SP1 and PDK1 plasmids were transfected into HCC cells by a transient transfection assay, and the expression and interaction of LncRNA HOTAIR, SP1 and PDK1 were assessed via qRT-PCR and western blotting. RESULTS: ß-Elemene suppressed HCC cell growth through the downregulation of LncRNA HOTAIR, SP1 and PDK1. The results demonstrated a reciprocal interaction among LncRNA HOTAIR, SP1 and PDK1. Exogenous overexpression LncRNA HOTAIR or SP1 eliminated the suppressive effects of ß-Elemene on them, and both of which regulated PDK1 expression in HCC cells. Additionally, exogenously overexpressed SP1 or LncRNA HOTAIR prevented ß-Elemene inhibition of the protein-level expression of PDK1, whereas overexpressing PDK1 had no effect on SP1, though it still weakened the inhibition of cell growth and LncRNA HOTAIR expression by ß-Elemene. CONCLUSION: ß-Elemene suppresses HCC cell proliferation via through the regulation of LncRNA HOTAIR, SP1, PDK1 and their interaction.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , RNA, Long Noncoding/genetics , Sesquiterpenes/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Hepatocellular/genetics , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Sp1 Transcription Factor/genetics
6.
Front Pharmacol ; 12: 650816, 2021.
Article in English | MEDLINE | ID: mdl-34456715

ABSTRACT

Psoriasis is a chronic proliferative skin disorder characterised by abnormal epidermal differentiation. The Fuzhenghefuzhiyang (FZHFZY) formula created by Chuanjian Lu, a master of Chinese medicine in dermatology, has been external used in the Guangdong Provincial Hospital of Chinese Medicine for the treatment of psoriasis, but its mechanisms of action against psoriasis remain poorly understood. This study involved an exploration of the effects of FZHFZY on epidermal differentiation and its underlying mechanisms in interleukin (IL)-17A/IL-22/interferon (IFN)-γ/tumour necrosis factor (TNF)-α-stimulated HaCaT cells and in a mouse model of imiquimod (IMQ)-induced psoriasis. Cell viability was assessed by MTT assay. Epidermal differentiation was detected by reverse-transcription polymerase chain reaction and western blotting. Histological evaluation of the skin tissue was performed via haematoxylin and eosin staining, and the Akt/mTORC1/S6K1 pathway was analysed by western blotting. FZHFZY inhibited proliferation and improved epidermal differentiation in IL-17A/IL-22/IFN-γ/TNF-α-induced HaCaT cells. FZHFZY ameliorated symptoms of psoriasis, regulated epidermal differentiation and inhibited phosphorylation of the Akt/mTORC1/S6K1 pathway in the skin of mice with imiquimod-induced psoriasis. Our results suggest that FZHFZY may exhibit therapeutic action against psoriasis by regulating epidermal differentiation via inhibition of the Akt/mTORC1/S6K1 pathway.

7.
Front Immunol ; 12: 649591, 2021.
Article in English | MEDLINE | ID: mdl-33995368

ABSTRACT

Psoriasis is a chronic proliferative autoimmune dermatologic disease characterised by abnormal angiogenesis. Thus, regulating angiogenesis in the skin is an important treatment strategy for psoriasis. PSORI-CM02, an empirical Chinese medicine formula optimised from Yin Xie Ling, was created by the Chinese medicine specialist, Guo-Wei Xuan. Clinical studies have shown that PSORI-CM02 is safe and effective for the treatment of psoriasis. However, its anti-psoriatic mechanisms remain to be further explored. In this study, we investigated the effects of PSORI-CM02 on angiogenesis in the skin and the underlying mechanisms in IL-17A-stimulated human umbilical vein endothelial cells (HUVECs) and a murine model of imiquimod (IMQ)-induced psoriasis. In vitro, PSORI-CM02 significantly inhibited the proliferation and migration of IL-17A-stimulated HUVECs in a dose-dependent manner. Further, it markedly regulated the antioxidative/oxidative status and inflammation; suppressed the expression of VEGF, VEGFR1, VEGFR2, ANG1, and HIF-1α; and reduced the phosphorylation of MAPK signalling pathway components in IL-17A-stimulated HUVECs. In vivo studies showed that PSORI-CM02 markedly reduced angiogenesis in the skin of mice with IMQ-induced psoriasis, while significantly rebalancing antioxidant/oxidant levels; inhibiting the production of IL-6, TNF-α, IL-17A, and IL-17F; and repressing the synthesis of angiogenic mediators. In addition, PSORI-CM02 markedly reduced the activation of the MAPK signalling pathway in psoriatic skin tissue. Taken together, our results demonstrated that PSORI-CM02 inhibited psoriatic angiogenesis by reducing the oxidative status and inflammation, suppressing the expression of angiogenesis-related molecules, and inhibiting the activation of the MAPK signalling pathway in vitro and in vivo.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Neovascularization, Pathologic/drug therapy , Psoriasis/drug therapy , Skin/drug effects , Animals , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , Human Umbilical Vein Endothelial Cells , Humans , Imiquimod/administration & dosage , Imiquimod/toxicity , Interleukin-17/immunology , Interleukin-17/metabolism , Keratinocytes , Male , Mice , Neovascularization, Pathologic/chemically induced , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/pathology , Oxidative Stress/drug effects , Oxidative Stress/immunology , Psoriasis/chemically induced , Psoriasis/immunology , Psoriasis/pathology , Skin/blood supply , Skin/immunology , Skin/pathology
8.
J Cell Mol Med ; 24(10): 5578-5592, 2020 05.
Article in English | MEDLINE | ID: mdl-32248643

ABSTRACT

HOTAIR is an important carcinogenic lncRNA and involves in tumorigenesis, and invasion. MiR-34a-5p functions as a tumour suppressor. However, the underlying mechanism of HOTAIR regulation especially in association with miR-34a-5p in non-small-cell lung cancer (NSCLC) has not been explored. Herein, we performed series of in vitro experiments, including viability, migration, invasion, apoptosis and in vivo xenograft model, and identified that HOTAIR was remarkably elevated in NSCLC cells. Enforced HOTAIR expression promoted migration and invasion, while depleted HOTAIR diminished the ability of migration and invasion of NSCLC cells. We also observed that miR-34a-5p was dramatically inhibited in NSCLC cells and the binding correlation between HOTAIR and miR-34a-5p was confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. We also showed that induction of miR-34a-5p and reduction of HOTAIR, and the interaction between miR-34a-5p and HOTAIR resulted in the suppression of epithelial-mesenchymal transition (EMT) as illustrated by induction of key epithelial markers E-cadherin expression, reduction of vimentin and EMT-inducing transcription factor snail. Excessive expression of snail resisted miR-34a-5p-inhibited cell growth. Snail binds to E-cadherin promoter and regulates E-cadherin expression. There was a synergy in combination of berberine and gefinitib in this process. Similar findings were also observed in a tumour xenograft model. Collectively, this is the first report demonstrating reciprocal interaction of miR-34a-5p- and HOTAIR-mediated regulation of snail resulting in inhibition of EMT process by the combination of berberine and gefitinib suggesting that regulation of miR-34a-5p- and HOTAIR-mediated inhibition of EMT may provide novel treatment paradigms for lung cancer.


Subject(s)
Epithelial-Mesenchymal Transition/genetics , Lung Neoplasms/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Animals , Apoptosis , Berberine/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Survival/drug effects , Cell Survival/genetics , Female , Flow Cytometry , Gefitinib/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice
9.
Phytother Res ; 34(1): 201-213, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31823440

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a common head and neck malignancy with higher incidence in Southern China and Southeast Asia. Solamargine (SM), a steroidal alkaloid glycoside, has been shown to have anticancer properties. However, the underlying mechanism involved remains undetermined. In this study, we showed that SM inhibited the growth of NPC cells. Mechanistically, we found that solamargine decreased lncRNA colon cancer-associated transcript-1 (CCAT1) and increased miR7-5p expression. There was a reciprocal interaction of CCAT1 and miR7-5p. In addition, SM inhibited the expression of SP1 protein and promoter activity, which was strengthened by miR7-5p mimics and inhibited by overexpressed CCAT1. MiR7-5p could bind to 3'-UTR of SP1 and attenuated SP1 gene expression. Exogenously expressed SP1 feedback resisted SM-increased miR7-5p expression and more importantly reversed SM-inhibited growth of NPC cells. Finally, SM inhibited NPC tumor growth in vivo. Collectively, our results show that SM inhibits the growth of NPC cells through reciprocal regulation of CCAT1 and miR7-5p, followed by inhibition of SP1 gene expression in vitro and in vivo. The interregulation and correlation among CCAT1, miR7-5p and SP1, and the feedback regulatory loop unveil the novel molecular mechanism underlying the overall responses of SM in anti-NPC.


Subject(s)
Colonic Neoplasms/genetics , Gene Expression Regulation, Neoplastic/genetics , MicroRNAs/metabolism , Nasopharyngeal Carcinoma/genetics , Solanaceous Alkaloids/metabolism , Sp1 Transcription Factor/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , China , Disease Models, Animal , Humans , Mice , Transfection
10.
Biomed Pharmacother ; 121: 109632, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31707347

ABSTRACT

The Chinese herbal prescription Xiaoji decoction (XJD) has been used as an adjuvant treatment of cancer for decades. However, the molecular mechanisms underlying XJD enhancement of the efficiency of chemotherapy were undetermined. In this study, we observed that combination of XJD and cisplatin (DDP) showed a greater inhibition on growth and induced a high magnitude of apoptosis in non-small cell lung cancer (NSCLC) cells. We also found that XJD decreased lncRNA PVT1 and increased miR181a-5p expressions. There was a reciprocal interaction between PVT1 and miR181a-5p. XJD decreased SP1 protein, which were overcame by overexpressed PVT1 and inhibitors of miR181a-5p. Overexpressed SP1 reversed the inhibitory effect of XJD on cell growth. Importantly, XJD and DDP exhibited synergy on regulation of PVT1, miR181a-5p, and SP1 expressions. The similar results were observed in one in vivo model. In conclusions, XJD inhibits NSCLC cell growth via reciprocal interaction of PVT1 and miR181a-5p followed by reducing SP1 expression. XJD and DDP exhibit synergy. This study provides a novel mechanism by which XJD enhances the anti-cancer effect of DDP in NSCLC cells.


Subject(s)
Cisplatin/pharmacology , Drugs, Chinese Herbal/pharmacology , Lung Neoplasms/drug therapy , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Sp1 Transcription Factor/metabolism , A549 Cells , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/metabolism
11.
Onco Targets Ther ; 12: 10115-10127, 2019.
Article in English | MEDLINE | ID: mdl-31819506

ABSTRACT

BACKGROUND: Lung cancer is a leading cause of cancer-related death worldwide. Previously we demonstrated that polyphyllin I (PPI), a bioactive component extracted from Paris polyphylla, inhibited the growth of non-small cell lung cancer (NSCLC) cells through the SAPK/JNK-mediated suppressing p65, DNMT1 and EZH2 expressions. However, the molecular mechanism underlying anti-lung cancer effect by PPI still remain elusive. PURPOSE: In this current study, we further explored the molecular mechanism underlying the anti-lung cancer effect of PPI. METHODS: MTT, Cell-LightTM EdU DNA cell proliferation and colony formation assays were used to measure cell growth. Western blot were used to examine protein levels of c-Jun and p21. The expression level of long non-codingth RNA HOX transcript antisense RNA (HOTAIR) was measured by qRT-PCR. The p21 promoter activity was measured by Dual-Luciferase Reporter Assay System. The transient transfection experiments were used to silence and overexpression of c-Jun, p21 and HOTAIR. Tumor xenograft and bioluminescent imaging experiments were carried out to confirm the in vitro findings. RESULTS:  We showed that PPI suppressed growth of NSCLC cells. Mechanistically, we observed that PPI reduced expression of HOTAIR, while increased transcription factor c-Jun protein levels. Additionally, PPI also induced protein expression and promoter activity of p21, a cyclin-dependent kinase inhibitor. While exogenously expressed HOTAIR showed no effect on c-Jun levels, silencing of c-Jun significantly reversed the PPI-inhibited HOTAIR expression. Moreover, excessive expressed c-Jun further enhanced PPI-inhibited HOTAIR expression and PPI-induced p21 protein levels. Intriguingly, overexpression of HOTAIR and silencing of c-Jun overcame the PPI-induced p21 protein and promoter activity. Finally, silencing of p21 neutralized the PPI-inhibited cell proliferation. Similar results were also found in one xenograft mouse model. CONCLUSION:  Our results demonstrate that PPI inhibits growth of NSCLC cells through regulation of HOTAIR and c-Jun expressions, which lead to induction of p21 gene. The interactions among HOTAIR, c-Jun and p21 regulatory axis converge in the overall anti-lung cancer effect of PPI. This study unveils an additional new mechanism for the anti-lung cancer role of PPI.

12.
Front Oncol ; 9: 1081, 2019.
Article in English | MEDLINE | ID: mdl-31681610

ABSTRACT

Solasonine (SS), a natural glycoalkaloid component, has been shown to have potent inhibitory activity and cytotoxicity against many cancer types. However, the precise mechanisms underlying this, particularly in hepatocellular carcinoma (HCC) are poorly understood. In this study, we showed that SS inhibited growth of HCC cells. Mechanistically, we observed that SS increased the expression of miR-375-3p, whereas reducing levels of long non-coding RNAs (lncRNAs) CCAT1 was noticed in HepG2 HCC and other cells. In addition, we found that SS repressed transcription factors, SP1 and interferon regulatory factor 5 (IRF5), protein expressions. There was a reciprocal interaction among miR-375-3p, CCAT1, and SP1. Moreover, SS inhibited IRF5 promoter activity, which was not observed in cells transfected with excessive expressed SP1 vectors. Interestingly, exogenously expressed IRF5 was shown to reverse expressions of SS-inhibited CCAT1 and induced-miR-375-3p; and neutralized SS-inhibited growth of HCC cells. Similar results were also found in vivo mouse model. Collectively, our results show that SS inhibits HepG2 HCC growth through the reciprocal regulation between the miR-375-3p and lncRNA CCAT1, and this results in transcription factor SP1-mediated reduction of IRF5 expression. The regulations and interactions among miR-375-3p, CCAT1, SP1, and IRF5 axis unveil a novel molecular mechanism underlying the anti-HCC growth by SS. IRF5 may be a potential target for treatment of HCC.

13.
Neural Regen Res ; 11(7): 1153-8, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27630702

ABSTRACT

Genistein is effective against amyloid-ß toxicity, but the underlying mechanisms are unclear. We hypothesized that genistein may protect neurons by inhibiting the mitochondrial apoptotic pathway, and thereby play a role in the prevention of Alzheimer's disease. A rat model of Alzheimer's disease was established by intraperitoneal injection of D-galactose and intracerebral injection of amyloid-ß peptide (25-35). In the genistein treatment groups, a 7-day pretreatment with genistein (10, 30, 90 mg/kg) was given prior to establishing Alzheimer's disease model, for 49 consecutive days. Terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling assay demonstrated a reduction in apoptosis in the hippocampus of rats treated with genistein. Western blot analysis showed that expression levels of capase-3, Bax and cytochrome c were decreased compared with the model group. Furthermore, immunohistochemical staining revealed reductions in cytochrome c and Bax immunoreactivity in these rats. Morris water maze revealed a substantial shortening of escape latency by genistein in Alzheimer's disease rats. These findings suggest that genistein decreases neuronal loss in the hippocampus, and improves learning and memory ability. The neuroprotective effects of genistein are associated with the inhibition of the mitochondrial apoptotic pathway, as shown by its ability to reduce levels of caspase-3, Bax and cytochrome c.

SELECTION OF CITATIONS
SEARCH DETAIL
...