Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Arthroplasty ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848788

ABSTRACT

BACKGROUND: Informed by the precedent of an American Association of Hip and Knee Surgeons (AAHKS) survey, where 95% of participants reported instigating modifications to preoperative risk factors, this study appraised the approach of Chinese arthroplasty surgeons toward patients who had modifiable risks. METHODS: An adaptation of the AAHKS survey tool for a Chinese cohort was undertaken. The survey queried 600 Chinese Society of Hip and Knee Surgeons members on whether the perception of unoptimized medical comorbidities and socioeconomic elements affects the propensity to offer surgical procedures. RESULTS: Out of the distributed surveys, 150 responses were received, culminating in a response rate of 25%. The data illustrate that 98.7% of Chinese surgeons practice restrictions on arthroplasty access for patients who have modifiable risk factors, with notable frequencies for malnutrition (93.3%), anemia (91.3%), recent hyaluronic acid injections (within one month, 88.7%), and corticosteroid injections (within 3 months, 74.7%). Assessment criteria ahead of surgery included limitations such as a body mass index under 40 (47.3%), requirements for smoking cessation (57.3%), an acceptable hemoglobin A1c level (95.3%), and a dependent fasting blood glucose level (88%). Moreover, 87.3% of respondents endorsed the need for additional interventions for certain socioeconomically disadvantaged patients to achieve successful outcomes. A majority of respondents (94.7%) believed that more equitable access to care, facilitated by better-adjusted payment methodologies, could enhance patient outcomes. Current payment schemes were also perceived by a majority to potentially compromise outcomes for patients who have inadequate social support (80.7%), low socioeconomic status (67.3%), and those lacking insurance (72.7%). CONCLUSIONS: The consistency of the almost 99% response rate in addressing modifiable risk factors prior to arthroplasty aligns closely with the reported practices in the AAHKS survey. These findings underscore the shared valuation of preoperative risk factor optimization by Chinese and American arthroplasty surgeons, notwithstanding divergent healthcare system structures.

2.
Heliyon ; 10(8): e29361, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38628726

ABSTRACT

Inflammation affects several aspects of lung cancer progression including cell proliferation, metastasis, apoptosis, angiogenesis, and drug resistance. Baicalin, an active component of Scutellaria baicalensis Georgi, exhibits anticancer activity in various cancers. However, the effects of baicalin on lung cancer and the underlying molecular mechanisms remain largely unknown. This study is to explore the effect and mechanism of baicalin on lung cancer cell A549 and urethane-induced mouse lung cancer. A cell viability assay, colony formation assay, wound healing assay, acridine orange/ethidium bromide (AO/EB) staining assay, Western blot assay, urethane-induced mouse lung cancer model, hematoxylin and eosin (HE) staining, immunohistochemistry (IHC), and ELISA assay were performed to investigate the effects of baicalin on lung cancer in vitro and in vivo. Network pharmacology analysis, molecular docking, gene silencing assays, and LPS-induced inflammation model were utilized to explore the molecular mechanisms underlying the effect of baicalin on lung cancer. Baicalin showed significant anti-proliferative, anti-migratory, anti-inflammatory and pro-apoptotic effects in vitro; it also inhibited the progression of urethane-induced mouse lung cancer in vivo. Mechanistically, suppressor of cytokine signaling 1 (SOCS1) was the key determinant for baicalin-induced inhibition of lung cancer. Baicalin increased SOCS1 expression to inactivate the NF-κB/STAT3 pathway to inhibit lung cancer in vitro and in vivo. Taken together, baicalin reduces inflammation to inhibit lung cancer via targeting SOCS1/NF-κB/STAT3 axis, providing a prospective compound and novel target for lung cancer treatment.

3.
Bioorg Med Chem ; 102: 117657, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38428068

ABSTRACT

The epidermal growth factor receptor (EGFR) has received significant attention as a potential target for glioblastoma (GBM) therapeutics in the past two decades. However, although cetuximab, an antibody that specifically targets EGFR, exhibits a high affinity for EGFR, it has not yet been applied in the treatment of GBM. Antibody-drug conjugates (ADCs) utilize tumor-targeting antibodies for the selective delivery of cytotoxic drugs, resulting in improved efficacy compared to conventional chemotherapy drugs. However, the effectiveness of cetuximab as a targeted antibody for ADCs in the treatment of GBM remains uncertain. In this study, we synthesized AGCM-22, an EGFR-targeted ADC derived from cetuximab, by conjugating it with the tubulin inhibitor monomethyl auristatin E (MMAE) using our Valine-Alanine Cathepsin B cleavable linker. In vitro experiments demonstrated that AGCM-22 effectively inhibited GBM cell proliferation through increased levels of apoptosis and autophagy-related cell death, whereas cetuximab alone had no anti-GBM effects. Additionally, both mouse and human orthotopic tumor models exhibited the selective tumor-targeting efficacy of AGCM-22, along with favorable metabolic properties and superior anti-GBM activity compared to temozolomide (TMZ). In summary, this study presents a novel ADC for GBM therapy that utilizes cetuximab as the tumor-targeting antibody, resulting in effective delivery of the cytotoxic drug payload.


Subject(s)
Antineoplastic Agents , Glioblastoma , Immunoconjugates , Humans , Animals , Mice , Cetuximab/pharmacology , Pharmaceutical Preparations , Glioblastoma/metabolism , Antibodies , Antineoplastic Agents/therapeutic use , ErbB Receptors , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Cell Line, Tumor , Xenograft Model Antitumor Assays
4.
Chin Neurosurg J ; 9(1): 33, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38031178

ABSTRACT

Intramedullary tumors are a class of central nervous system tumors with an incidence of 2 to 4%. As they are located very deep and frequently cause postoperative neurological complications, surgical resection is difficult. In recent years, many surgeons have performed electrophysiological monitoring to effectively reduce the occurrence of postoperative neurological complications. Modern electrophysiological monitoring technology has advanced considerably, leading to the development of many monitoring methods, such as SSEPs, MEPs, DCM, and EMG, to monitor intramedullary tumors. However, electrophysiological monitoring in tumor resection is still being studied. In this article, we discussed the different monitoring methods and their role in monitoring intramedullary tumors by reviewing previous studies. Intratumorally tumors need to be monitored for a summary of the condition of the patient. Only by using various monitoring methods flexibly and through clear communication between surgeons and neurophysiological experts can good decisions be made during surgery and positive surgical results be achieved.

5.
Sleep ; 45(11)2022 11 09.
Article in English | MEDLINE | ID: mdl-35997995

ABSTRACT

In Sleepy (Sik3Slp) or Sik3S551A mice, deletion or mutation of inhibitory phosphorylation site serine551 from salt-inducible kinase 3 (SIK3) markedly increases daily non-rapid eye movement sleep (NREMS) amount, accompanied with constitutively elevated NREMS delta power density-a measure of sleep intensity. Multiple SLP/SIK3 isoforms are expressed in mouse brain neurons, however, their respective roles in sleep regulation remain to be elucidated. Here, we identified a new and most abundant short isoform of SLP/SIK3 and examined sleep phenotypes resulted from isoform-specific expression of SLP-short (S) and long (L) isoforms. Adeno-associated virus (AAV)-mediated adult brain chimeric (ABC)-expression of SLP-S in neurons, but not in astrocytes, significantly and constitutively elevates NREMS delta power, whereas slightly increases NREMS amount. The ability of SLP-S to regulate sleep quantity/intensity is abrogated by kinase-inactivating mutations, suggesting that the sleep-promoting activity of SLP-S is dependent on its kinase activity. In Sik3S551A-L knock-in mice, isoform-specific expression of SIK3S551A-L (or SLP-L) significantly increases NREMS amount with a modest effect on NREMS delta power. ABC-expression of SLP-S complements the sleep phenotypes of heterozygous Sik3S551A-L mice by further increasing NREMS amount and NREMS delta power to levels of Sik3Slp or Sik3S551A mice. Taken together, these results indicate that both SLP-L and SLP-S isoforms contribute critically to the increases of sleep quantity and intensity in Sik3Slp or Sik3S551A mice.


Subject(s)
Sleep, Slow-Wave , Wakefulness , Animals , Mice , Electroencephalography , Phosphorylation , Protein Isoforms/metabolism , Protein Isoforms/pharmacology , Protein Serine-Threonine Kinases/genetics , Sleep/physiology , Wakefulness/physiology
6.
Front Oncol ; 12: 911043, 2022.
Article in English | MEDLINE | ID: mdl-35898898

ABSTRACT

Purpose: Primary sporadic intradural malignant peripheral nerve sheath tumor (MPNST) in the spinal canal is a type of rare neoplasm with challenging diagnosis and therapy. The overall prognosis of this tumor is markedly different from that of the usual spinal intradural tumors. The purpose of this systematic review is to reduce the misdiagnosis and enhance the prognosis of the disease by reviewing the literature. Methods: PubMed, Medline, and Embase databases were searched for articles in English language published from 1980 to May 2021, yielding 500 potentially relevant articles. The keywords were as follows: "spinal", "malignant peripheral nerve sheath tumor", "neurosarcoma", "malignant schwannoma", and "malignant neurofibroma". Thirteen papers met the eligibility criteria, including 55 cases with spinal intradural primary sporadic MPNSTs, which were confirmed by post-operation pathology. We further analyzed the clinical manifestations, radiological manifestations, pathological features, comprehensive treatment strategies, and prognosis. Results: Fifty-five spinal intradural primary sporadic MPNSTs from 30 (54.5%) male and 25 (45.5%) female patients with an average age at diagnosis of 40 years (range, 3-70 years) were included in the study. The most common clinical manifestations were local or radicular pain and motor disturbance. All tumors had significant enhancement and heterogeneous enhancement was more common. Out of 18 lesions, 14 were diagnosed as high grade and the remaining 4 were diagnosed as low grade. The ki-67 labeling index ranged from 5% to 60%. The median recurrence and survival time were 36 and 72 months, respectively. The log-rank tests indicated that significant predictors of OS were patient age (≤30 vs. >30 years) at the time of diagnosis and the presence of metastatic disease, and similar analyses for RFS demonstrated that the presence of metastatic disease was the only significant predictor (60 vs. 10 months). The multivariate Cox proportional hazards regression analysis revealed that absence of metastasis was an independent factor for predicting a favorable prognosis. Conclusions: Spinal intradural primary sporadic MPNSTs are challenging malignant tumors without a systematic treatment plan. The factors affecting its prognosis are not clear. Even after surgical treatment and adjuvant treatment, the recurrence rate and mortality rate are still high. Clinicians should be alert to the possibility of this disease and achieve early detection and treatment.

7.
J Neurosci ; 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35667851

ABSTRACT

Classical forward and reverse mouse genetics require germline mutations and, thus, are unwieldy to study sleep functions of essential genes or redundant pathways. It is also time-consuming to conduct electroencephalogram/electromyogram-based mouse sleep screening owing to labor-intensive surgeries and genetic crosses. Here, we describe a highly accurate SleepV (video) system and adeno-associated virus (AAV)-based adult brain chimeric (ABC)-expression/knockout (KO) platform for somatic genetics analysis of sleep in adult male or female mice. A pilot ABC screen identifies CREB and CRTC1, of which constitutive or inducible expression significantly reduces quantity and/or quality of non-rapid eye movement sleep. Whereas ABC-KO of exon 13 of Sik3 by AAV-Cre injection in Sik3-E13flox/flox adult mice phenocopies Sleepy (Sik3Slp/+) mice, ABC-CRISPR of Slp/Sik3 reverses hypersomnia of Sleepy mice, indicating a direct role of SLP/SIK3 kinase in sleep regulation. Multiplex ABC-CRISPR of both orexin/hypocretin receptors causes narcolepsy episodes, enabling one-step analysis of redundant genes in adult mice. Therefore, this somatic genetics approach should facilitate high-throughput analysis of sleep regulatory genes, especially for essential or redundant genes, in adult mice by skipping mouse development and minimizing genetic crosses.SIGNIFICANCE STATEMENTThe molecular mechanisms of mammalian sleep regulation remain unclear. Classical germline mouse genetics are unwieldy to study sleep functions of essential genes or redundant pathways. The EEG/EMG-based mouse sleep screening is time-consuming owing to labor-intensive surgeries and lengthy genetic crosses. To overcome these "bottlenecks", we developed a highly accurate video-based sleep analysis system and adeno-associated virus-mediated ABC-expression/knockout platform for somatic genetics analysis of sleep in adult mice. These methodologies facilitate rapid identification of sleep regulatory genes, but also efficient mechanistic studies of the molecular pathways of sleep regulation in mice.

8.
Front Immunol ; 12: 746621, 2021.
Article in English | MEDLINE | ID: mdl-34671362

ABSTRACT

Though significant strides in tumorigenic comprehension and therapy modality have been witnessed over the past decades, glioma remains one of the most common and malignant brain tumors characterized by recurrence, dismal prognosis, and therapy resistance. Immunotherapy advance holds promise in glioma recently. However, the efficacy of immunotherapy varies among individuals with glioma, which drives researchers to consider the modest levels of immunity in the central nervous system, as well as the immunosuppressive tumor immune microenvironment (TIME). Considering the highly conserved property for sustaining energy homeostasis in mammalian cells and repeatedly reported links in malignancy and drug resistance, autophagy is determined as a cutting angle to elucidate the relations between glioma and the TIME. In this review, heterogeneity of TIME in glioma is outlined along with the reciprocal impacts between them. In addition, controversies on whether autophagy behaves cytoprotectively or cytotoxically in cancers are covered. How autophagy collapses from its homeostasis and aids glioma malignancy, which may depend on the cell type and the cellular context such as reactive oxygen species (ROS) and adenosine triphosphate (ATP) level, are briefly discussed. The consecutive application of autophagy inducers and inhibitors may improve the drug resistance in glioma after overtreatments. It also highlights that autophagy plays a pivotal part in modulating glioma and the TIME, respectively, and the intricate interactions among them. Specifically, autophagy is manipulated by either glioma or tumor-associated macrophages to conform one side to the other through exosomal microRNAs and thereby adjust the interactions. Given that some of the crosstalk between glioma and the TIME highly depend on the autophagy process or autophagic components, there are interconnections influenced by the status and well-being of cells presumably associated with autophagic flux. By updating the most recent knowledge concerning glioma and the TIME from an autophagic perspective enhances comprehension and inspires more applicable and effective strategies targeting TIME while harnessing autophagy collaboratively against cancer.


Subject(s)
Autophagy/immunology , Brain Neoplasms/immunology , Glioma/immunology , Tumor Microenvironment/immunology , Animals , Brain Neoplasms/pathology , Glioma/pathology , Humans
9.
Front Oncol ; 11: 716830, 2021.
Article in English | MEDLINE | ID: mdl-34540687

ABSTRACT

I-BET151 is an inhibitor of bromodomain and extra-terminal domain (BET) proteins that selectively inhibits BET family members (BRD2, BRD3, BRD4, and BRDT). Over the past ten years, many studies have demonstrated the potential of I-BET151 in cancer treatment. Specifically, I-BET151 causes cell cycle arrest and inhibits tumor cell proliferation in some hematological malignancies and solid tumors, such as breast cancer, glioma, melanoma, neuroblastoma, and ovarian cancer. The anticancer activity of I-BET151 is related to its effects on NF-κB, Notch, and Hedgehog signal transduction pathway, tumor microenvironment (TME) and telomere elongation. Remarkably, the combination of I-BET151 with select anticancer drugs can partially alleviate the occurrence of drug resistance in chemotherapy. Especially, the combination of forskolin, ISX9, CHIR99021, I-BET151 and DAPT allows GBM cells to be reprogrammed into neurons, and this process does not experience an intermediate pluripotent state. The research on the anticancer mechanism of I-BET151 will lead to new treatment strategies for clinical cancer.

10.
Macromol Rapid Commun ; 42(20): e2100362, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34435714

ABSTRACT

The treatment of large segmental bone defects and complex types of fractures caused by trauma, inflammation, or tumor resection is still a challenge in the field of orthopedics. Various natural or synthetic biological materials used in clinical applications cannot fully replicate the structure and performance of raw bone. This highlights how to endow materials with multiple functions and biological properties, which is a problem that needs to be solved in practical applications. Hydrogels with outstanding biocompatibility, for their casting into any shape, size, or form, are suitable for different forms of bone defects. Therefore, they have been used in regenerative medicine more widely. In this review, versatile hydrogels are compounded with nanoparticles of different dimensions, and many desirable features of these materials in bone regeneration are introduced, including drug delivery, cell factor vehicle, cell scaffolds, which have potential in bone regeneration applications. The combination of hydrogels and nanoparticles of different dimensions encourages better filling of bone defect areas and has higher adaptability. This is due to the minimally invasive properties of the material and ability to match irregular defects. These biological characteristics make composite hydrogels with different dimensional nanoparticles become one of the most attractive options for bone regeneration materials.


Subject(s)
Hydrogels , Nanoparticles , Biocompatible Materials , Bone Regeneration , Tissue Engineering
11.
FASEB J ; 35(6): e21603, 2021 06.
Article in English | MEDLINE | ID: mdl-33999448

ABSTRACT

Extracellular matrix (ECM) plays an important role in the progression of cancer. Collagen is the most abundant component in ECM, and it is involved in the biological formation of cancer. Although type XI collagen is a minor fibrillar collagen, collagen XI alpha 1 chain (COL11A1) has been found to be upregulated in a variety of cancers including ovarian cancer, breast cancer, thyroid cancer, pancreatic cancer, non-small-cell lung cancer, and transitional cell carcinoma of the bladder. High levels of COL11A1 usually predict poor prognosis, while COL11A1 is related to angiogenesis, invasion, and drug resistance of cancer. However, little is known about the specific mechanism by which COL11A1 regulates tumor progression. Here, we have organized and summarized the recent developments regarding elucidation of the relationship between COL11A1 and various cancers, as well as the interaction between COL11A1 and intracellular signaling pathways. In addition, we have selected therapeutic agents targeting COL11A1. All these indicate the possibility of using COL11A1 as a target for cancer treatment.


Subject(s)
Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/antagonists & inhibitors , Collagen Type XI/antagonists & inhibitors , Molecular Targeted Therapy , Neoplasms/drug therapy , Animals , Humans , Neoplasms/metabolism , Neoplasms/pathology
14.
Mol Med Rep ; 22(6): 5480, 2020 12.
Article in English | MEDLINE | ID: mdl-33173967

ABSTRACT

Following the publication of the above article, the authors have realized that an error was made in the Acknowledgements section in this paper; this research was not, in fact, supported by a grant from the National Natural Science Foundation of Jilin (Project no. 83657488), as had been stated. The authors regret their oversight in providing this incorrect information in the Acknowledgements section of their paper. They thank the Editor of Molecular Medicine Reports for allowing them the opportunity to publish this corrigendum, and apologize to the readership of the Journal for any inconvenience caused. [the original article was published in Molecular Medicine Reports 9: 763-767, 2014; DOI: 10.3892/mmr.2013.1850].

15.
Life Sci ; 258: 118093, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32673666

ABSTRACT

BACKGROUND: Nuclear factor-kappa B (NF-κB) is an important nuclear transcription factor in cells, involving in a series of processes such as cell proliferation, apoptosis, and differentiation. In this study, we explored the specific mechanism of NF-κB on the differentiation of osteoclasts. METHODS: MicroRNAs (miRNAs) expression microarray data GSE105027 related to osteoarthritis was obtained to screen out the differentially expressed miRNA. Phorbol-12-myristate-13-acetate (PMA) was used to induce THP-1 cells to differentiate into macrophages, followed by induction to osteoclasts using macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). ELISA and RT-qPCR were conducted to examine IL-6 and IL-1ß expression. The binding of NF-κB to the miR-1276 promoter region was demonstrated by ChIP assay, and targeting relationship between miR-1276 and MITF was verified by dual luciferase reporter assay. KK, iKBα, NF-kB, p-IKK, p-iKBα, p-NF-kB expression was analyzed by western blot. NF-κB and miR-1276 expression in osteoclasts was examined later. After gain- and less-of-function study, the effects on osteoclast differentiation were detected by TRAP-positive osteoclasts, TRAP activity, TRAP-5b content, F-Actin expression, as well as osteoclast differentiation marker genes expression. RESULTS: NF-κB was activated in osteoclasts, and down-regulation of NF-κB inhibited osteoclast differentiation. Next, miR-1276 was downregulated in osteoclasts after differentiation from monocytes. Meanwhile, NF-κB decreased the expression of miR-1276 by binding to the miR-1276 promoter, thereby elevating MITF expression, thereby promoting osteoclast differentiation. CONCLUSION: In summary, NF-κB promoted osteoclast differentiation through downregulating miR-1276 to upregulate MITF.


Subject(s)
Cell Differentiation , Down-Regulation/genetics , Microphthalmia-Associated Transcription Factor/metabolism , NF-kappa B/metabolism , Osteoclasts/cytology , Osteoclasts/metabolism , Base Sequence , Cell Differentiation/genetics , Gene Silencing , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , THP-1 Cells
16.
PeerJ ; 8: e8845, 2020.
Article in English | MEDLINE | ID: mdl-32435528

ABSTRACT

BACKGROUND: Luteolin (LUT) is a flavonoid found in vegetables and fruits that has diverse functions. Doxorubicin (DOX) is an anthracycline antibiotic that is frequently used for the treatment of various cancers. Unfortunately, the clinical efficacy of DOX is limited by its dose-related cardiotoxicity. In this study, we aimed to investigate the potential mechanism through which LUT attenuates cardiotoxicity in vivo. METHODS: We evaluated the body weight, heart weight, electrocardiogram, and pathological changes before and after administration of LUT. Moreover, the effects of LUT (50 mg/kg in the low dose group, 100 mg/kg in the high dose group) on biochemical parameters (brain natriuretic peptide, creatine kinase MB, cardiac troponin T, and dehydrogenation of lactate enzyme) and oxidative stress parameters (malondialdehyde and superoxide dismutase) were studied in the sera of cardiotoxicity model rats. We also identified the apoptotic mediators whose expression was induced by LUT by quantitative real-time reverse transcription-polymerase chain reaction (RT-qPCR) evaluation. In addition, we used network analysis to predict DOX-induced cardiotoxicity and protection afforded by LUT. Western blotting was used to detect the expression of associated proteins. RESULTS: LUT significantly improved DOX-induced cardiotoxicity in a dose-dependent fashion. LUT ameliorated DOX-induced weight loss and heart weight changes, as well as changes in biochemical parameters and oxidative stress parameters in heart injury model rats. LUT's protective effect was observed via regulation of the apoptotic markers Bcl-2, Bax, and caspase-3 mRNA and protein expression levels. Network analysis showed that the AKT/Bcl-2 signalling pathway was activated; specifically, the PH domain leucine-rich repeats protein phosphatase 1 (phlpp1) was involved in the AKT/Bcl-2 signal pathway. LUT inhibited the activity of phlpp1 leading to positive regulation of the AKT/Bcl-2 pathway, which attenuated doxorubicin-induced cardiotoxicity. CONCLUSIONS: These results demonstrate that LUT exerted protective effects against DOX-induced cardiotoxicity in vivo by alleviating oxidative stress, suppressing phlpp1 activity, and activating the AKT/Bcl-2 signalling pathway.

17.
Oncol Rep ; 43(3): 1031, 2020 03.
Article in English | MEDLINE | ID: mdl-32020218

ABSTRACT

Oncol Rep 31: [Related article:] 1271­1276, 2014; DOI: 10.3892/or.2014.2991. The authors wish to retract their article entitled 'Down-regulation of NOB1 suppresses the proliferation and tumor growth of non­small cell lung cancer in vitro and in vivo', published in Oncology Reports 31: 1271­1276, 2014. The authors have identified that the results shown in Fig. 4A did not display a significant level of difference comparing among the groups, which undermines the conclusions stated in the article. In addition, the 'Acknowledgements' section featured an error in terms of the quoted project number. For these reasons, the authors have decided to withdraw this paper from the Journal. All the named authors agree to this retraction. and regret any inconvenience to the readers and to the Editor of Oncology Reports that this retraction will cause.

18.
J Cell Biochem ; 120(9): 15429-15442, 2019 09.
Article in English | MEDLINE | ID: mdl-31111563

ABSTRACT

Ankylosing spondylitis (AS) refers to a type of arthritis manifested with chronic inflammation of spine joints. microRNAs (MiRNAs) have been identified as new therapeutic targets for inflammatory diseases. In this study, we evaluated the influence of microRNA-96 (miR-96) on osteoblast differentiation together with bone formation in a murine model of AS. The speculated relationship that miR-96 could bind to sclerostin (SOST) was verified by dual luciferase reporter assay. After successful model establishment, the mice with AS and osteoblasts isolated from mice with AS were treated with mimics or inhibitors of miR-96, or DKK-1 (a Wnt signaling inhibitor). The effects of gain- or loss-of-function of miR-96 on the inflammatory cytokine release (IL-6, IL-10, and TNF-α), alkaline phosphatase (ALP) activity, calcium nodule formation, along with the viability of osteoblasts were determined. It was observed that miR-96 might target and regulate SOST. Besides, miR-96 was expressed at a high level in AS mice while SOST expressed at a low level. TOP/FOP-Flash luciferase reporter assay confirmed that miR-96 activated the Wnt signaling pathway. Moreover, AS mice overexpressing miR-96 exhibited increased contents of IL-6, IL-10 and TNF-α, ALP activity, calcium nodule numbers, and viability of osteoblasts. In contrast, inhibition of miR-96 resulted in suppression of the osteoblast differentiation and bone formation. In conclusion, the study implicates that overexpressing miR-96 could improve osteoblast differentiation and bone formation in AS mice via Wnt signaling pathway activation, highlighting a potential new target for AS treatment.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , MicroRNAs/genetics , Osteoblasts/cytology , Spondylitis, Ankylosing/genetics , 3' Untranslated Regions , Animals , Cell Differentiation , Disease Models, Animal , Gene Expression Regulation , HEK293 Cells , Humans , Interleukin-10/metabolism , Interleukin-6/metabolism , Male , Mice , Osteoblasts/metabolism , Spondylitis, Ankylosing/metabolism , Tumor Necrosis Factor-alpha/metabolism , Wnt Signaling Pathway
19.
Medicine (Baltimore) ; 97(40): e12576, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30290619

ABSTRACT

Facial nerve paralysis is a common complication following cerebellopontine angle (CPA) surgery. This study investigated the prognostic value of facial nerve motor-evoked potentials (FNMEPs) elicited by transcranial electrical stimulation for facial nerve outcome after CPA tumorectomy.A total of 95 patients were enrolled in this study between January 2014 and January 2016. All these patients underwent CPA tumorectomy (unilateral, n = 95; bilateral, n = 1). Intraoperative FNMEP elicited by transcranial electrical stimulation was recorded. The short- and long-term postoperative facial nerve functions were evaluated according to the House-Brackmann (HB) scale. The correlation between perioperative changes in the FNMEP stimulus threshold (delta FNMEP = postoperative stimulus threshold level-preoperative stimulus threshold level) and postoperative facial nerve functions were analyzed.On the first day postoperatively, the facial nerve function was HB grade I in 67, grade II in 17, grade III in 7, and grade IV in 5 facial nerves. One year postoperatively, the facial nerve function was grade I in 80, grade II in 11, grade III in 3, and grade IV in 2 facial nerves. The delta FNMEP was significantly correlated with the short- and long-term facial nerve function; receiver operating characteristic (ROC) curves yielded a cut-off delta FNMEP value of 30 V (sensitivity, 91.3%; specificity, 98.6%) and 75 V (sensitivity, 100%; specificity, 98.8%) for predicting short- and long-term facial nerve function damage, respectively.FNMEP elicited by transcranial electrical stimulation is an effective and safe approach for predicting facial nerve function in CPA tumorectomy. A high delta FNMEP is a potential indicator for the prediction of postoperative facial nerve damage.


Subject(s)
Cerebellar Neoplasms/surgery , Cerebellopontine Angle/surgery , Facial Nerve/physiopathology , Facial Paralysis/etiology , Transcranial Direct Current Stimulation/methods , Adult , Evoked Potentials, Motor , Female , Humans , Male , Middle Aged , Prognosis
20.
Medicine (Baltimore) ; 97(42): e12703, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30334955

ABSTRACT

RATIONALE: A sellar mass in children is most often seen in craniopharyngeal tumors, intracranial germ cell tumors, or pituitary adenomas. However, pituitary hyperplasia secondary to primary hypothyroidism (PHPH) is not commonly seen in children. PATIENT CONCERNS: A 10-year-old girl was admitted due to growth retardation and obesity for 4 years. On physical examination, the patient had a height of 118 cm, body weight of 46 kg, body mass index (BMI) of 33.0 kg/m. DIAGNOSES: After magnetic resonance imaging (MRI) and laboratory tests, her initial diagnosis was Hashimoto's thyroiditis, primary hypothyroidism, and reactive pituitary hyperplasia. INTERVENTIONS: She was treated with oral L-thyroxine tablets. OUTCOMES: After 6 months, physical examination showed a height of 125 cm, weight of 36 kg, BMI of 23.0 kg/m. She developed well, with 12 cm of yearly growth thereafter. LESSONS: The diagnosis of PHPH in a child is very important and sometimes difficult. Based on the summary and analysis of previous cases, we can learn that the main manifestations of PHPH include growth arrest and obesity, perhaps accompanied by symptoms caused by a decreased thyroid hormone concentration and elevated prolactin (PRL) concentration. Intracranial MRI shows diffuse enlargement of the anterior lobe of the pituitary gland, with a dome-shaped blunt edge change. Thyroid hormone levels may decrease, whereas the thyroid stimulating hormone (TSH) level increases, commonly accompanied by an elevated PRL, reduced growth hormone (GH) levels, and positive findings of TPOAb and TGAb. Improvement of symptoms and the normalization of hormone levels as well as restoration of pituitary size can be achieved after treated with thyroid hormone replacement therapy. And a hasty decision on surgical resection should be avoided when the diagnosis is uncertain.


Subject(s)
Hashimoto Disease/complications , Hypothyroidism/complications , Pituitary Diseases/complications , Child , Female , Hashimoto Disease/diagnosis , Hashimoto Disease/drug therapy , Humans , Hyperplasia/pathology , Hypothyroidism/diagnosis , Hypothyroidism/drug therapy , Magnetic Resonance Imaging , Pituitary Diseases/diagnosis , Pituitary Diseases/drug therapy , Pituitary Gland/pathology , Thyroid Function Tests/methods , Thyroid Gland/pathology , Thyroxine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL