Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Small ; 18(48): e2204350, 2022 12.
Article in English | MEDLINE | ID: mdl-36269872

ABSTRACT

Extracellular outer-membrane vesicles (OMVs) are attractive for use as drug nanocarriers, because of their high biocompatibility and ability to enter cells. However, widespread use is hampered by low yields. Here, a high-yield method for magnetic harvesting of OMVs from Escherichia coli is described. To this end, E. coli are grown in the presence of magnetic iron-oxide nanoparticles (MNPs). Uptake of MNPs by E. coli is low and does not increase secretion of OMVs. Uptake of MNPs can be enhanced through PEGylation of MNPs. E. coli growth in the presence of PEGylated MNPs increases bacterial MNP-uptake and OMV-secretion, accompanied by upregulation of genes involved in OMV-secretion. OMVs containing MNPs can be magnetically harvested at 60-fold higher yields than achieved by ultracentrifugation. Functionally, magnetically-harvested OMVs and OMVs harvested by ultracentrifugation are both taken-up in similar numbers by bacteria. Uniquely, in an applied magnetic field, magnetically-harvested OMVs with MNPs accumulate over the entire depth of an infectious biofilm. OMVs harvested by ultracentrifugation without MNPs only accumulate near the biofilm surface. In conclusion, PEGylation of MNPs is essential for their uptake in E. coli and yields magnetic OMVs allowing high-yield magnetic-harvesting. Moreover, magnetic OMVs can be magnetically targeted to a cargo delivery site in the human body.


Subject(s)
Escherichia coli , Extracellular Vesicles , Humans , Biofilms , Magnetic Phenomena
2.
Sci Adv ; 8(7): eabl4923, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35171681

ABSTRACT

Malignant tumors will become vulnerable if their uncontrolled biosynthesis and energy consumption engaged in metabolic reprogramming can be cut off. Here, we report finding a glycolytic inhibitor targeting glioblastoma with graphite dots-assisted laser desorption/ionization mass spectrometry as an integrated drug screening and pharmacokinetic platform (GLMSD). We have performed high-throughput virtual screening to narrow an initial library of 240,000 compounds down to the docking of 40 compounds and identified five previously unknown chemical scaffolds as promising hexokinase-2 inhibitors. The best inhibitor (Compd 27) can regulate the reprogrammed metabolic pathway in U87 glioma cells (median inhibitory concentration ~ 11.3 µM) for tumor suppression. Highly effective therapy against glioblastoma has been demonstrated in both subcutaneous and orthotopic brain tumors by synergizing Compd 27 and temozolomide. Our glycolytic inhibitor discovery can inspire personalized medicine targeting reprogrammed metabolisms of malignant tumors. GLMSD enables large, high-quality data for next-generation artificial intelligence-aided drug development.


Subject(s)
Glioblastoma , Graphite , Artificial Intelligence , Cell Line, Tumor , Glioblastoma/metabolism , Humans , Mass Spectrometry , Temozolomide/pharmacology , Temozolomide/therapeutic use
3.
Analyst ; 146(18): 5533-5541, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34515705

ABSTRACT

It is a pre-requisite to ionize analyte molecules efficiently for detection by laser desorption/ionization mass spectrometry. Here, we report a conceptual demonstration of cationizing neutral small molecules which are typically difficult to be ionized with the traditional organic matrices due to their low proton/cation affinity values. Our strategy features generating radical cations from site-specifically carboxylated 10-(4-carboxyphenyl)-10H-phenothiazine-3,7-dicarboxylic acid (PTZ(A)2-Ph(A)) with a laser, and anchoring the chlorine ion from NaCl through covalent bond-like bridging interactions with the N/S atoms in the heterocyclic structure. This "Maverick" design allows a dramatic change of the energy landscape of analyte sodiation with an enhanced efficiency. We have synthesized two families of compounds based on the model structures of phenothiazine (PTZ) and phenoxazine (PXZ) and their carboxylated derivatives, and performed comparison between them or against the traditional organic matrices in a systematic format. We have demonstrated that PTZ(A)2-Ph(A) is outstanding as a novel MALDI matrix for the detection of oligosaccharides and amino acids, with an ultra-clean background baseline and high signal-to-noise ratios (up to dozens of times better than the traditional matrices). This work provides a new method for the cationization of neutral small molecules in a distinct mechanism, inspiring the development of next-generation matrices for sensitive detection of hard-to-be-ionized molecules by MALDI MS.


Subject(s)
Oligosaccharides , Protons , Lasers , Phenothiazines , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
4.
J Mater Chem B ; 9(1): 125-130, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33225328

ABSTRACT

Gram-positive bacteria are one of the most common pathogens causing severe and acute infection, and hospital infection caused by Gram-positive bacteria have increased significantly. Also, as antibiotics have been widely used, abusing of antibiotics is becoming an increasingly serious problem which is followed by dangerous drug resistance. Here, we developed a series of cationic carbon dots (CDs) with high-performance as antibacterial agents by using tartaric acid and m-aminophenol as precursors. The surface charge of these CDs can be regulated from +4.5 ± 0.42 mV to +33.2 ± 0.99 mV by increasing the contents of pyridine N and pyrrolic N in CDs. Further antibacterial experiments show that 250 µg mL-1 of CDs with +33.2 ± 0.99 mV can selectively kill Gram-positive bacteria and the antibacterial efficiency can reach approximately >99%. These CDs with positive surface charge can be selectively absorbed on the cell walls of Staphylococcus aureus (S. aureus) via electrostatic interaction and then disturb their physiological metabolism, eventually leading to bacterial death. The present work provides a novel method to adjust the surface charge of CDs and apply these CDs as alternative antibacterial agents.


Subject(s)
Aminophenols/administration & dosage , Anti-Bacterial Agents/administration & dosage , Carbon/administration & dosage , Gram-Positive Bacteria/drug effects , Quantum Dots/administration & dosage , Tartrates/administration & dosage , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Gram-Positive Bacteria/physiology , HeLa Cells , Humans , Surface Properties
5.
Talanta ; 220: 121371, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32928398

ABSTRACT

Appropriate prescription of antibiotics requires the pharmacokinetic knowledge of the drugs and their metabolites in blood, and their distribution/retention in organ tissues. Here we report that highly crystalline graphite dots (GDs) allow for quantitative profiling of antibiotic metabolites in a spatial-temporal manner, in combination with matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI). GDs matrix features an ultra-clean background base line and high efficiency in ionization of small molecules, thus enabling quantification of sulfamethoxazole (SMZ) and its metabolites with limit of detection (LOD) in the femtomole range. Distinctly different from the other MS techniques, our approach is tolerant to high levels of salt contaminants in the complexed biological samples, thus minimizing the sample purification requirements and allowing for tests in small volumes. We have demonstrated quantitative measurements of the dynamic concentration changes of SMZ (m/z 276.27) and two metabolites, N4-hydroxy-SMZ (m/z 292.28) and N4-acetyl-SMZ (m/z 318.31) with only 1 µL mouse blood sample for each test. High-resolution distribution patterns of SMZ metabolites have directly been visualized a on the liver subsegments. Therefore, it allows for simultaneously acquisition of pharmacokinetic data in the blood combined with detailed hepatic zonation of SMZ metabolites for the first time. As a rapid, high-throughput platform to monitor small molecules in vivo, our approach of GDs-assisted MADLI MSI will foster the medical research on the antibiotic usage and drug development.


Subject(s)
Anti-Bacterial Agents , Graphite , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Animals , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/metabolism , Lasers , Mice , Spectrophotometry
6.
J Mater Chem B ; 8(34): 7792-7800, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32747886

ABSTRACT

There is increasing demand for anti-doping drug monitoring in sports and food safety checks by developing sensitive and fast analytical methods. Here we report the development of hybrid Ir/SiNW as a new MALDI matrix for the detection of small molecules. This matrix is characterized by sufficient UV absorption, low-noise background, and high efficiency in ionization of small molecules. Sensitive detection of clenbuterol (LOD: 0.18 pmol) and a variety of other small molecules has been achieved using the Ir/SiNW matrix with a reproducible performance. Compared to the individual components separately, the matrix of hybrid Ir/SiNW synthesized via in situ growth can promote the MS signal intensity by up to 10 fold under identical experimental conditions. We provide a unique mechanism for the high performance of the hybrid Ir/SiNW matrix with the characteristic properties of hydrogen atom transfer and enhanced protonation at the interface of the hybrid nanostructures. Our approach of using a hybrid Ir/SiNW matrix enables detection of clenbuterol quantitatively in complicated biological samples and in vivo experiments, promising a useful tool for food security and anti-doping drug monitoring in sports.


Subject(s)
Clenbuterol/analysis , Iridium/chemistry , Limit of Detection , Mass Spectrometry/methods , Nanowires/chemistry , Silicon/chemistry
7.
Analyst ; 144(22): 6751-6759, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31612876

ABSTRACT

There is a great need to develop sensitive and specific methods for quantitative analysis of caspase-3 activities in cell apoptosis. Herein, we report a new method for sensitive detection of caspase-3 enzyme activities and inhibitor screening based on dual maleimide (DuMal) labeling quantitation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Evaluation of caspase-3 activities is performed using MS analysis of the enzymatic product of the peptide probe, which fuses a caspase-3 cleavable peptide segment (DEVD) and a quantifiable "ID tag" (a peptide segment of FRGLRGFKC labeled by maleimide). The DuMal labeling technique features non-isotopic tagging, rapid reactions, and reproducible quantitation. We have achieved quantitative analysis of the enzyme activities with a limit of detection (LOD) and limit of quantitation (LOQ) of caspase-3 down to 0.11 nM and 0.29 nM respectively and a proof-of-concept demonstration of its inhibitor screening. Our method has further been tested for caspase-3 activities in a Parkinson's disease cellular model, suggesting a useful tool for protease activity research.


Subject(s)
Caspase 3/analysis , Enzyme Assays/methods , Maleimides/chemistry , Peptides/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , 1-Methyl-4-phenylpyridinium/pharmacology , Amino Acid Sequence , Animals , Caspase 3/chemistry , Caspase Inhibitors/chemistry , Cell Line, Tumor , Humans , Limit of Detection , Mice , Oligopeptides/chemistry , Parkinson Disease/enzymology , Pentanoic Acids/chemistry , Rats
SELECTION OF CITATIONS
SEARCH DETAIL