Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 784
Filter
2.
Sheng Li Xue Bao ; 76(4): 526-536, 2024 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-39192786

ABSTRACT

The present study aimed to explore the effect of swimming exercise on vascular calcification in type 2 diabetic rats and its related molecular mechanism. Male Sprague Dawley (SD) rats were randomly divided into normal control (NC), diabetes control (DC) and diabetes+exercise (DE) groups. The DC and DE groups were intraperitoneally injected with streptozotocin (STZ) and fed with high-fat diet to establish type 2 diabetes mellitus model. The NC and DC groups did not exercise, and the DE group performed swimming exercise for 8 weeks. ELISA was used to detect the serum glycated hemoglobin A1c (HbA1c) level. The aortas of rats were taken as sample. Assay kits were used to detect vascular calcium content and alkaline phosphatase (ALP) activity. Von Kossa staining was used to detect calcium deposition. qRT-PCR was used detect the expression of microRNA-145 (miR-145). Western blot was used to detect the protein expression levels of smooth muscle contraction markers, calcification marker and related proteins. The results showed that, compared with the NC group, the blood glucose, serum HbA1c level, vascular calcium content and ALP activity in the DC group were significantly increased, the protein expression levels of smooth muscle contraction markers smooth muscle protein 22α (SM22α) and α-smooth muscle actin (α-SMA) were significantly down-regulated, and the protein expression level of calcification marker osteopontin (OPN) was significantly up-regulated; Compared with the DC group, the serum HbA1c level, vascular calcium content and ALP activity in the DE group were significantly decreased, the protein expression levels of SM22α and α-SMA were significantly up-regulated, and the protein expression level of OPN was significantly down-regulated; Compared with the NC group, the expression of miR-145-5p in the DC group was significantly down-regulated, and the protein expression levels of transforming growth factor-ß (TGF-ß), SMAD2, ERK1/2 and p-ERK1/2 were significantly up-regulated; Compared with the DC group, the expression of miR-145-5p was significantly up-regulated in the DE group, while the expressions of TGF-ß, ERK1/2 and p-ERK1/2 were significantly down-regulated. These results suggest that miR-145/TGF-ß signaling is involved in the improving effects of 8-week swimming exercise on glucose metabolism disorder, vascular smooth muscle cell phenotype switching and vascular calcification in type 2 diabetes mellitus.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , MicroRNAs , Physical Conditioning, Animal , Rats, Sprague-Dawley , Swimming , Vascular Calcification , Animals , Male , Rats , MicroRNAs/metabolism , MicroRNAs/genetics , Vascular Calcification/metabolism , Vascular Calcification/etiology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/metabolism , Swimming/physiology , Transforming Growth Factor beta/metabolism
3.
Adv Sci (Weinh) ; : e2400370, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113226

ABSTRACT

NK2 Homeobox 1 (NKX2-1) is a well-characterized pathological marker that delineates lung adenocarcinoma (LUAD) progression. The advancement of LUAD is influenced by the immune tumor microenvironment through paracrine signaling. However, the involvement of NKX2-1 in modeling the tumor immune microenvironment is still unclear. Here, the downregulation of NKX2-1 is observed in high-grade LUAD. Meanwhile, single-cell RNA sequencing and Visium in situ capturing profiling revealed the recruitment and infiltration of neutrophils in orthotopic syngeneic tumors exhibiting strong cell-cell communication through the activation of CXCLs/CXCR2 signaling. The depletion of NKX2-1 triggered the expression and secretion of CXCL1, CXCL2, CXCL3, and CXCL5 in LUAD cells. Chemokine secretion is analyzed by chemokine array and validated by qRT-PCR. ATAC-seq revealed the restrictive regulation of NKX2-1 on the promoters of CXCL1, CXCL2, and CXCL5 genes. This phenomenon led to increased tumor growth, and conversely, tumor growth decreased when inhibited by the CXCR2 antagonist SB225002. This study unveils how NKX2-1 modulates the infiltration of tumor-promoting neutrophils by inhibiting CXCLs/CXCR2-dependent mechanisms. Hence, targeting CXCR2 in NKX2-1-low tumors is a potential antitumor therapy that may improve LUAD patient outcomes.

4.
Chin J Integr Med ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073515

ABSTRACT

Persicae Semen (Taoren), the seed of mature peaches consumed as both food and medicine, is native to the temperate regions of China, distributed in the provinces of North and East China, and currently cultivated worldwide. The primary components of Persicae Semen include volatile oil, protein, amino acids, amygdalin, and prunasin, all of which have pharmacological properties, such as anti-inflammatory, antioxidant, and immune regulatory effects, and are clinically used in the treatment of gynecological, cardiovascular, cerebrovascular, orthopedic, and digestive system diseases. This review provides a comprehensive perspective on the resource status, ethnopharmacology, phytochemistry, pharmacology, and toxicology, as well as the trend of Persicae Semen patent, global distribution, and clinical applications. This review will help facilitate the development and utilization of Persicae Semen in clinical settings.

5.
Article in English | MEDLINE | ID: mdl-39031269

ABSTRACT

Coronavirus disease 2019 (COVID-19), a kind of respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), primarily spreads through the respiratory tract from human to human. Its extensive and rapid spread has led to a global pandemic, causing great harm to human health and economic development all over the world. Current known evidence indicates that SARS-CoV-2 has evolved accumulating multiple mutations, with altered infectivity and viral replication capacity. A better understanding of the complications of COVID-19 and its relationship with underlying diseases is crucial for the prevention and treatment of SARS-CoV-2. This case series reviewed case data of our 4 recent patients with severe or critical COVID-19, including treatment plan, status of pulmonary infection and their microbiology workup with metagenomic next-generation sequencing with bronchoalveolar lavage fluid. This report shed light on the significance of rapid and accurate clinical diagnosis and treatment on COVID-19.

6.
BMC Plant Biol ; 24(1): 705, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054416

ABSTRACT

BACKGROUND: Drought stress limits significantly the crop productivity. However, plants have evolved various strategies to cope with the drought conditions by adopting complex molecular, biochemical, and physiological mechanisms. Members of the nuclear factor Y (NF-Y) transcription factor (TF) family constitute one of the largest TF classes and are involved in plant responses to abiotic stresses. RESULTS: TaNF-YB2, a NY-YB subfamily gene in T. aestivum, was characterized in this study focusing on its role in mediating plant adaptation to drought stress. Yeast two-hybrid (Y-2 H), biomolecular fluoresence complementation (BiFC), and Co-immunoprecipitation (Co-IP) assays indicated that TaNF-YB2 interacts with the NF-YA member TaNF-YA7 and NF-YC family member TaNF-YC7, which constitutes a heterotrimer TaNF-YB2/TaNF-YA7/TaNF-YC7. The TaNF-YB2 transcripts are induced in roots and aerial tissues upon drought signaling; GUS histochemical staining analysis demonstrated the roles of cis-regulatory elements ABRE and MYB situated in TaNF-YB2 promoter to contribute to target gene response to drought. Transgene analysis on TaNF-YB2 confirmed its functions in regulating drought adaptation via modulating stomata movement, osmolyte biosynthesis, and reactive oxygen species (ROS) homeostasis. TaNF-YB2 possessed the abilities in transcriptionally activating TaP5CS2, the P5CS family gene involving proline biosynthesis and TaSOD1, TaCAT5, and TaPOD5, the genes encoding antioxidant enzymes. Positive correlations were found between yield and the TaNF-YB2 transcripts in a core panel constituting 45 wheat cultivars under drought condition, in which two types of major haplotypes including TaNF-YB2-Hap1 and -Hap2 were included, with the former conferring more TaNF-YB2 transcripts and stronger plant drought tolerance. CONCLUSIONS: TaNF-YB2 is transcriptional response to drought stress. It is an essential regulator in mediating plant drought adaptation by modulating the physiological processes associated with stomatal movement, osmolyte biosynthesis, and reactive oxygen species (ROS) homeostasis, depending on its role in transcriptionally regulating stress response genes. Our research deepens the understanding of plant drought stress underlying NF-Y TF family and provides gene resource in efforts for molecular breeding the drought-tolerant cultivars in T. aestivum.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Triticum , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Triticum/genetics , Triticum/physiology , Triticum/metabolism , Stress, Physiological/genetics , Adaptation, Physiological/genetics , Genes, Plant , Drought Resistance
7.
World J Oncol ; 15(4): 527-542, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38993251

ABSTRACT

Triple-negative breast cancer (TNBC) is a highly heterogeneous breast cancer subtype, which is also characterized by the aggressive phenotype, high recurrence rate, and poor prognosis. Antibody-drug conjugate (ADC) is a monoclonal antibody with a cytotoxic payload connected by a linker. ADC is gaining more and more attention as a targeted anti-cancer agent. Clinical studies of emerging ADC drugs such as sacituzumab govitecan and trastuzumab deruxtecan in patients with metastatic breast cancer (including TNBC) are progressing rapidly. In view of its excellent clinical efficacy and good tolerability, Sacituzumab govitecan gained accelerated approval by the FDA for the treatment of advanced metastatic TNBC in 2020. This review discusses the treatment status and challenges in TNBC, with an emphasis on the current status of ADC development and clinical trials in TNBC and metastatic breast cancer. We also summarize the clinical experience and future exploration directions of ADC development for TNBC patients.

8.
Toxicol Res (Camb) ; 13(3): tfae085, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38883411

ABSTRACT

Objective: Screening and predicting potential targets for gastrodin antioxidant stress based on network pharmacology methods, and exploring the effect of gastrodin on lead acetate induced oxidative stress in PC12 cells through cell experiments. Methods: Through the Pharmaper database Predict the target of action of gastrodin. Through OMIM and GeneCards to collect oxidative stress targets from database, and intersect with drug targets to obtain drug disease intersection targets; Construct a PPI network diagram using the STRING database. Perform GO enrichment analysis and KEGG pathway enrichment analysis on intersection targets through the DAVID platform. Lead acetate (PbAc) exposure was used to establish a lead poisoning cell model, and intracellular ROS levels, ALB, AKT1, and Caspase-3 levels were measured. Results: A total of 288 targets of gastrodin action, 638 targets related to oxidative stress, and 62 drug disease intersection targets were obtained, among which core targets such as ALB, AKT1, CASP3 may be closely related to oxidative stress. KEGG pathway analysis showed that gastrodin antioxidant stress mainly involved in lipid, cancer pathway and other signaling pathways. The results of the cell experiment showed that 50 µM is the optimal effective concentration for PbAc induced ROS production in PC12 cells. Gastrodin significantly increased the ROS content of PC12 cells treated with PbAc, Upregulation of ALB expression and downregulation of AKT1 and CASP3 expression. Conclusions: Gastrodin may alleviate PbAc-induced ROS in PC12 cells, indicating potential protective effects against oxidative stress. Further studies are needed to confirm these findings and explore the underlying mechanisms.

10.
J Nutr ; 154(7): 2315-2325, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763264

ABSTRACT

BACKGROUND: Laying hens undergo intensive metabolism and are vulnerable to cardiac insults. Previous research demonstrated overt heart disorders of broiler chickens induced by dietary Se deficiency. OBJECTIVES: This study aimed to reveal effects and mechanism of dietary Se insufficiency on cardiac injuries of egg-type chicks in their early life. METHODS: White Leghorn chicks (0-d-old, female) were fed a corn-soy, Se-insufficient basal diet (BD, 0.05 mg Se/kg; n = 11) or the BD supplemented with 0.3 mg Se/kg (as sodium selenite; n = 8) for 35 d. Cardiac tissues were collected at the end of study for histology and to determine its relationship with heart Se contents, selenoprotein expression profiles, antioxidant and inflammatory status, and the Toll-like receptor 4/extracellular signal-regulated kinases/p38 map kinase/c-Jun N-terminal kinase (TLR4/ERK/P38/JNK) pathway. RESULTS: Compared with those fed 0.35 mg Se/kg, chicks fed BD had significantly lower body weights and average daily gain, and 28% lower heart Se, and developed cardiac mononuclear inflammatory cell infiltration, along with elevated (P < 0.05) serum concentrations of creatine kinase, aldolase, and interleukin-1 (IL-1). The BD decreased (P < 0.05) body weight and heart glutathione contents and expression of selenoproteins but increased (P < 0.05) heart concentrations of malondialdehyde and reactive oxygen species. These changes were associated with increased (P < 0.05) mRNA and/or protein concentrations of cyclooxygenases, lipoxygenase-12, cytokines (IL-1ß), nuclear factor (NF) κB subunit, chemokines, and receptors (CCL20, CXCR1, and CXCLI2) and increased (P < 0.1) TLR4/ERK /P38/JNK in the heart of Se-insufficient chicks. CONCLUSIONS: Dietary Se insufficiency induces infiltration of mononuclear inflammatory cells in the heart of egg-type chicks. This cardiac injury was mediated by decreased functional expressions of selenoproteins, which resulted in apparent elevated oxidative stress and subsequent activations of the TLR4 pathway and NF κB.


Subject(s)
Chickens , Diet , Selenium , Animals , Selenium/administration & dosage , Selenium/deficiency , Selenium/pharmacology , Female , Diet/veterinary , Animal Feed/analysis , Poultry Diseases , Inflammation/metabolism , Myocardium/metabolism , Myocardium/pathology , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Heart/drug effects , Dietary Supplements , Selenoproteins/metabolism , Selenoproteins/genetics , Heart Diseases/metabolism , Heart Diseases/etiology , Antioxidants/metabolism
11.
ACS Nano ; 18(21): 13755-13767, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38752610

ABSTRACT

The ability to manipulate the self-assembly of proteins is essential to understanding the mechanisms of life and beneficial to fabricating advanced nanomaterials. Here, we report the transformation of the MS2 phage capsid from nanocages to nanotubes and then to nanotube hydrogels through simple point mutations guided by interfacial interaction redesign. We demonstrate that site 70, which lies in the flexible FG loop of the capsid protein (CP), is a "magic" site that can largely dictate the final morphology of assemblies. By varying the amino acid at site 70, with the aid of a cysteine-to-alanine mutation at site 46, we achieved the assembly of double-helical or single-helical nanotubes in addition to nanocages. Furthermore, an additional cysteine substitution on the surface of nanotubes mediated their cross-linking to form hydrogels with reducing agent responsiveness. The hierarchical self-assembly system allowed for the investigation of morphology-related immunogenicity of MS2 CPs, which revealed dramatic differences among nanocages, nanotubes, and nanotube hydrogels in terms of immune response types, antibody levels and T cell functions. This study provides insights into the assembly manipulation of protein nanomaterials and the customized design of nanovaccines and drug delivery systems.


Subject(s)
Capsid Proteins , Capsid , Hydrogels , Nanotubes , Hydrogels/chemistry , Nanotubes/chemistry , Capsid Proteins/chemistry , Capsid Proteins/immunology , Capsid Proteins/genetics , Capsid/chemistry , Capsid/immunology , Levivirus/chemistry , Levivirus/immunology , Levivirus/genetics , Animals , Nanostructures/chemistry , Mice , Models, Molecular
12.
J Sci Food Agric ; 104(11): 6778-6786, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38567792

ABSTRACT

BACKGROUND: This study explored the denaturation of 11S globulin, a protein known for its diverse functional properties in soy protein applications, at pH 3.0 and pH 10.0, followed by a gradual return to pH 7.0 to facilitate renaturation. It investigated the structural and functional changes during renaturation induced by a change in pH, revealing the stabilization mechanism of 11S globulin. RESULTS: The findings revealed that during pH adjustment to neutral, the denatured soybean 11S globulin - resulting from alkaline (pH 10.0) or acidic (pH 3.0) treatments - experienced a refolding of its extended tertiary structure to varying extents. The particle size and the proportions of α-helix and ß-sheet in the secondary structure aligned progressively with those of the natural-state protein. However, for the alkali-denatured 11S, the ß-sheet content decreased upon adjustment to neutral, whereas an increase was observed for the acid-denatured 11S. In terms of functional properties, after alkaline denaturation, the foaming capacity (FC) and emulsifying activity index (EAI) of 11S increased by 1.4 and 1.2 times, respectively, in comparison with its native state. The solubility, foamability, and emulsifiability of the alkali-denatured 11S gradually diminished during renaturation but remained superior to those of the native state. Conversely, these properties showed an initial decline, followed by an increase during renaturation triggered by pH neutralization. CONCLUSIONS: This research contributes to the enhancement of protein functionality, offering a theoretical foundation for the development of functional soy protein products and expanding their potential applications. © 2024 Society of Chemical Industry.


Subject(s)
Globulins , Glycine max , Protein Denaturation , Soybean Proteins , Hydrogen-Ion Concentration , Globulins/chemistry , Glycine max/chemistry , Soybean Proteins/chemistry , Solubility , Protein Structure, Secondary
13.
Nucleic Acids Res ; 52(9): 5226-5240, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38613394

ABSTRACT

RNA acetylation is a universal post-transcriptional modification that occurs in various RNAs. Transfer RNA (tRNA) acetylation is found at position 34 (ac4C34) in bacterial tRNAMet and position 12 (ac4C12) in eukaryotic tRNASer and tRNALeu. The biochemical mechanism, structural basis and functional significance of ac4C34 are well understood; however, despite being discovered in the 1960s and identification of Kre33/NAT10 and Tan1/THUMPD1 as modifying apparatuses, ac4C12 modification activity has never been reconstituted for nearly six decades. Here, we successfully reconstituted the ac4C12 modification activity of yeast Kre33 and Tan1. Biogenesis of ac4C12 is primarily dependent on a minimal set of elements, including a canonical acceptor stem, the presence of the 11CCG13 motif and correct D-arm orientation, indicating a molecular ruler mechanism. A single A13G mutation conferred ac4C12 modification to multiple non-substrate tRNAs. Moreover, we were able to introduce ac4C modifications into small RNAs. ac4C12 modification contributed little to tRNA melting temperature and aminoacylation in vitro and in vivo. Collectively, our results realize in vitro activity reconstitution, delineate tRNA substrate selection mechanism for ac4C12 biogenesis and develop a valuable system for preparing acetylated tRNAs as well as non-tRNA RNA species, which will advance the functional interpretation of the acetylation in RNA structures and functions.


Subject(s)
RNA, Transfer , RNA-Binding Proteins , Saccharomyces cerevisiae Proteins , Acetylation , Mutation , Nucleic Acid Conformation , RNA Processing, Post-Transcriptional , RNA, Transfer/metabolism , RNA, Transfer/genetics , RNA, Transfer/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , RNA-Binding Proteins/metabolism
14.
Nanomaterials (Basel) ; 14(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38668216

ABSTRACT

Compared to SnTe and PbTe base materials, the GeTe matrix exhibits a relatively high Seebeck coefficient and power factor but has garnered significant attention due to its poor thermal transport performance and environmental characteristics. As a typical p-type IV-VI group thermoelectric material, W-doped GeTe material can bring additional enhancement to thermoelectric performance. In this study, the introduction of W, Ge1-xWxTe (x = 0, 0.002, 0.005, 0.007, 0.01, 0.03) resulted in the presence of high-valence state atoms, providing additional charge carriers, thereby elevating the material's power factor to a maximum PFpeak of approximately 43 µW cm-1 K-2, while slightly optimizing the Seebeck coefficient of the solid solution. Moreover, W doping can induce defects and promote slight rhombohedral distortion in the crystal structure of GeTe, further reducing the lattice thermal conductivity κlat to as low as approximately 0.14 W m-1 K-1 (x = 0.002 at 673 K), optimizing it to approximately 85% compared to the GeTe matrix. This led to the formation of a p-type multicomponent composite thermoelectric material with ultra-low thermal conductivity. Ultimately, W doping achieves the comprehensive enhancement of the thermoelectric performance of GeTe base materials, with the peak ZT value of sample Ge0.995W0.005Te reaching approximately 0.99 at 673 K, and the average ZT optimized to 0.76 in the high-temperature range of 573-723 K, representing an increase of approximately 17% compared to pristine GeTe within the same temperature range.

15.
Int J Mol Sci ; 25(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38674133

ABSTRACT

The unique zigzag-patterned tea plant is a rare germplasm resource. However, the molecular mechanism behind the formation of zigzag stems remains unclear. To address this, a BC1 genetic population of tea plants with zigzag stems was studied using histological observation and bulked segregant RNA-seq. The analysis revealed 1494 differentially expressed genes (DEGs) between the upright and zigzag stem groups. These DEGs may regulate the transduction and biosynthesis of plant hormones, and the effects on the phenylpropane biosynthesis pathways may cause the accumulation of lignin. Tissue sections further supported this finding, showing differences in cell wall thickness between upright and curved stems, potentially due to lignin accumulation. Additionally, 262 single-nucleotide polymorphisms (SNPs) across 38 genes were identified as key SNPs, and 5 genes related to zigzag stems were identified through homologous gene function annotation. Mutations in these genes may impact auxin distribution and content, resulting in the asymmetric development of vascular bundles in curved stems. In summary, we identified the key genes associated with the tortuous phenotype by using BSR-seq on a BC1 population to minimize genetic background noise.


Subject(s)
Camellia sinensis , Gene Expression Regulation, Plant , Polymorphism, Single Nucleotide , RNA-Seq , Camellia sinensis/genetics , Camellia sinensis/metabolism , Plant Stems/genetics , Plant Stems/metabolism , Mutation , Phenotype , Lignin/metabolism , Lignin/biosynthesis , Transcriptome/genetics , Gene Expression Profiling/methods , Plant Proteins/genetics , Plant Proteins/metabolism
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 541-545, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38660864

ABSTRACT

OBJECTIVE: To explore the feasibility of establishing combat readiness blood bank with low titer group O whole blood and group A plasma. METHODS: The Galileo automatic blood analyzer was used to detect the titers of IgM anti-A and anti-B antibodies in the samples of group O blood donors and IgM anti-B titer in the samples of group A blood donors. Group O blood donors with antibody titers below 128 were selected and included in the mobile blood bank for combat readiness, group A plasma with anti-B titer lower than 128 and group O whole blood with antibody titers below 128 were included in the combat readiness entity blood bank. RESULTS: A total of 1 452 group O blood donors were selected, and the anti-A/B antibody titers were detected. Both antibody titers were distributed below 512, and both peak values of sample distribution were at titer 4. The proportion of samples with titers>128 for both antibodies was relatively low. There was a significant positive correlation between the titers of the two antibodies (r =0.383), and the proportion of samples with IgM anti-A titer higher than IgM anti-B titer was relatively high. 1 335(91.94%) group O blood donors with IgM anti-A and anti-B antibody titers <128 could be included in the mobile blood bank. The anti-B titer of group A blood was detected in 512 cases and the results showed that as the antibody titer increased, the proportion of blood donors gradually decreased. 99.8% of group A blood donors had anti-B antibody titer less than 128, and only one case did not meet the inclusion criteria. CONCLUSION: The proportion of group O blood donors whose whole blood meet the low antibody titer standard is high, and almost all plasma of group A blood donors meet the low titer standard, which improves the blood supply rate in emergencies.


Subject(s)
ABO Blood-Group System , Blood Banks , Blood Donors , Immunoglobulin M , Humans , ABO Blood-Group System/immunology , Immunoglobulin M/blood , Feasibility Studies , Blood Grouping and Crossmatching , Plasma
18.
Neurochem Res ; 49(7): 1720-1734, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38520637

ABSTRACT

Vascular dementia (VaD) has a serious impact on the patients' quality of life. Icariin (Ica) possesses neuroprotective potential for treating VaD, yet its oral bioavailability and blood-brain barrier (BBB) permeability remain challenges. This research introduced a PEG-PLGA-loaded chitosan hydrogel-based binary formulation tailored for intranasal delivery, enhancing the intracerebral delivery efficacy of neuroprotective agents. The formulation underwent optimization to facilitate BBB crossing, with examinations conducted on its particle size, morphology, drug-loading capacity, in vitro release, and biodistribution. Using the bilateral common carotid artery occlusion (BCCAO) rat model, the therapeutic efficacy of this binary formulation was assessed against chitosan hydrogel and PEG-PLGA nanoparticles loaded with Ica. Post-intranasal administration, enhanced cognitive function was evident in chronic cerebral hypoperfusion (CCH) rats. Further mechanistic evaluations, utilizing immunohistochemistry (IHC), RT-PCR, and ELISA, revealed augmented transcription of synaptic plasticity-associated proteins like SYP and PSD-95, and a marked reduction in hippocampal inflammatory markers such as IL-1ß and TNF-α, highlighting the formulation's promise in alleviating cognitive impairment. The brain-derived neurotrophic factor (BDNF)/tropomyosin related kinase B (TrkB) pathway was activated significantly in the binary formulation compared with the other two. Our study demonstrates that the intranasal application of chitosan hydrogel loaded with Ica-encapsulated PEG-PLGA could effectively deliver Ica into the brain and enhance its neuroprotective effect.


Subject(s)
Brain-Derived Neurotrophic Factor , Dementia, Vascular , Flavonoids , Rats, Sprague-Dawley , Receptor, trkB , Signal Transduction , Animals , Flavonoids/pharmacology , Flavonoids/administration & dosage , Flavonoids/therapeutic use , Dementia, Vascular/drug therapy , Dementia, Vascular/metabolism , Male , Brain-Derived Neurotrophic Factor/metabolism , Receptor, trkB/metabolism , Signal Transduction/drug effects , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cognition/drug effects , Nanoparticles/chemistry , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Rats , Polyethylene Glycols/chemistry , Chitosan/chemistry , Administration, Intranasal , Nanoparticle Drug Delivery System , Polyesters
19.
J Med Case Rep ; 18(1): 89, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38444013

ABSTRACT

BACKGROUND: Fecal impaction is a digestive system disease, that is most common in the elderly population and becomes more prevalent with increasing age. Manual removal can successfully remove the impaction in 80% of fecal impaction cases. In severe cases, endoscopy and surgery may be necessary. CASE PRESENTATION: A 78-year-old Han Chinese man living in a nursing home was diagnosed with fecal impaction; his initial symptom was overflow diarrhea, which is a rare occurrence with regard to fecal impaction. Nevertheless, we were able to effectively treat this situation by employing a new medical device that presents a novel method for addressing fecal impaction. CONCLUSION: Early identification of fecal impaction with atypical symptoms is crucial to provide proper emergency management. A safe and noninvasive treatment method, especially for elderly patients with fecal impaction, should be chosen.


Subject(s)
Fecal Impaction , Male , Humans , Aged , Fecal Impaction/complications , Fecal Impaction/diagnostic imaging , Fecal Impaction/therapy , Asian People , Diarrhea/etiology , Diarrhea/therapy
20.
Cell Mol Life Sci ; 81(1): 147, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502309

ABSTRACT

GABAergic interneurons are poised with the capacity to shape circuit output via inhibitory gating. How early in the development of medial vestibular nucleus (MVN) are GABAergic neurons recruited for feedforward shaping of outputs to higher centers for spatial navigation? The role of early GABAergic transmission in assembling vestibular circuits for spatial navigation was explored by neonatal perturbation. Immunohistochemistry and confocal imaging were utilized to reveal the expression of parvalbumin (PV)-expressing MVN neurons and their perineuronal nets. Whole-cell patch-clamp recording, coupled with optogenetics, was conducted in vitro to examine the synaptic function of MVN circuitry. Chemogenetic targeting strategy was also employed in vivo to manipulate neuronal activity during navigational tests. We found in rats a neonatal critical period before postnatal day (P) 8 in which competitive antagonization of GABAergic transmission in the MVN retarded maturation of inhibitory neurotransmission, as evidenced by deranged developmental trajectory for excitation/inhibition ratio and an extended period of critical period-like plasticity in GABAergic transmission. Despite increased number of PV-expressing GABAergic interneurons in the MVN, optogenetic-coupled patch-clamp recording indicated null-recruitment of these neurons in tuning outputs along the ascending vestibular pathway. Such perturbation not only offset output dynamics of ascending MVN output neurons, but was further accompanied by impaired vestibular-dependent navigation in adulthood. The same perturbations were however non-consequential when applied after P8. Results highlight neonatal GABAergic transmission as key to establishing feedforward output dynamics to higher brain centers for spatial cognition and navigation.


Subject(s)
Spatial Navigation , Rats , Animals , Interneurons , Synaptic Transmission , Vestibular Nuclei/metabolism , GABAergic Neurons
SELECTION OF CITATIONS
SEARCH DETAIL