Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 777
Filter
1.
Toxicol Res (Camb) ; 13(3): tfae085, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38883411

ABSTRACT

Objective: Screening and predicting potential targets for gastrodin antioxidant stress based on network pharmacology methods, and exploring the effect of gastrodin on lead acetate induced oxidative stress in PC12 cells through cell experiments. Methods: Through the Pharmaper database Predict the target of action of gastrodin. Through OMIM and GeneCards to collect oxidative stress targets from database, and intersect with drug targets to obtain drug disease intersection targets; Construct a PPI network diagram using the STRING database. Perform GO enrichment analysis and KEGG pathway enrichment analysis on intersection targets through the DAVID platform. Lead acetate (PbAc) exposure was used to establish a lead poisoning cell model, and intracellular ROS levels, ALB, AKT1, and Caspase-3 levels were measured. Results: A total of 288 targets of gastrodin action, 638 targets related to oxidative stress, and 62 drug disease intersection targets were obtained, among which core targets such as ALB, AKT1, CASP3 may be closely related to oxidative stress. KEGG pathway analysis showed that gastrodin antioxidant stress mainly involved in lipid, cancer pathway and other signaling pathways. The results of the cell experiment showed that 50 µM is the optimal effective concentration for PbAc induced ROS production in PC12 cells. Gastrodin significantly increased the ROS content of PC12 cells treated with PbAc, Upregulation of ALB expression and downregulation of AKT1 and CASP3 expression. Conclusions: Gastrodin may alleviate PbAc-induced ROS in PC12 cells, indicating potential protective effects against oxidative stress. Further studies are needed to confirm these findings and explore the underlying mechanisms.

3.
J Nutr ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38763264

ABSTRACT

BACKGROUND: Laying hens undergo intensive metabolism and are vulnerable to cardiac insults. Previous research demonstrated overt heart disorders of broiler chickens induced by dietary Se deficiency. OBJECTIVES: This study aimed to reveal effects and mechanism of dietary Se insufficiency on cardiac injuries of egg-type chicks in their early life. METHODS: White Leghorn chicks (0-d-old, female) were fed a corn-soy, Se-insufficient basal diet (BD, 0.05 mg Se/kg; n = 11) or the BD supplemented with 0.3 mg Se/kg (as sodium selenite; n = 8) for 35 d. Cardiac tissues were collected at the end of study for histology and to determine its relationship with heart Se contents, selenoprotein expression profiles, antioxidant and inflammatory status, and the Toll-like receptor 4/extracellular signal-regulated kinases/p38 map kinase/c-Jun N-terminal kinase (TLR4/ERK/P38/JNK) pathway. RESULTS: Compared with those fed 0.35 mg Se/kg, chicks fed BD had significantly lower body weights and average daily gain, and 28% lower heart Se, and developed cardiac mononuclear inflammatory cell infiltration, along with elevated (P < 0.05) serum concentrations of creatine kinase, aldolase, and interleukin-1 (IL-1). The BD decreased (P < 0.05) body weight and heart glutathione contents and expression of selenoproteins but increased (P < 0.05) heart concentrations of malondialdehyde and reactive oxygen species. These changes were associated with increased (P < 0.05) mRNA and/or protein concentrations of cyclooxygenases, lipoxygenase-12, cytokines (IL-1ß), nuclear factor (NF) κB subunit, chemokines, and receptors (CCL20, CXCR1, and CXCLI2) and increased (P < 0.1) TLR4/ERK /P38/JNK in the heart of Se-insufficient chicks. CONCLUSIONS: Dietary Se insufficiency induces infiltration of mononuclear inflammatory cells in the heart of egg-type chicks. This cardiac injury was mediated by decreased functional expressions of selenoproteins, which resulted in apparent elevated oxidative stress and subsequent activations of the TLR4 pathway and NF κB.

4.
ACS Nano ; 18(21): 13755-13767, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38752610

ABSTRACT

The ability to manipulate the self-assembly of proteins is essential to understanding the mechanisms of life and beneficial to fabricating advanced nanomaterials. Here, we report the transformation of the MS2 phage capsid from nanocages to nanotubes and then to nanotube hydrogels through simple point mutations guided by interfacial interaction redesign. We demonstrate that site 70, which lies in the flexible FG loop of the capsid protein (CP), is a "magic" site that can largely dictate the final morphology of assemblies. By varying the amino acid at site 70, with the aid of a cysteine-to-alanine mutation at site 46, we achieved the assembly of double-helical or single-helical nanotubes in addition to nanocages. Furthermore, an additional cysteine substitution on the surface of nanotubes mediated their cross-linking to form hydrogels with reducing agent responsiveness. The hierarchical self-assembly system allowed for the investigation of morphology-related immunogenicity of MS2 CPs, which revealed dramatic differences among nanocages, nanotubes, and nanotube hydrogels in terms of immune response types, antibody levels and T cell functions. This study provides insights into the assembly manipulation of protein nanomaterials and the customized design of nanovaccines and drug delivery systems.


Subject(s)
Capsid Proteins , Capsid , Hydrogels , Nanotubes , Hydrogels/chemistry , Nanotubes/chemistry , Capsid Proteins/chemistry , Capsid Proteins/immunology , Capsid Proteins/genetics , Capsid/chemistry , Capsid/immunology , Levivirus/chemistry , Levivirus/immunology , Levivirus/genetics , Animals , Nanostructures/chemistry , Mice , Models, Molecular
5.
Nucleic Acids Res ; 52(9): 5226-5240, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38613394

ABSTRACT

RNA acetylation is a universal post-transcriptional modification that occurs in various RNAs. Transfer RNA (tRNA) acetylation is found at position 34 (ac4C34) in bacterial tRNAMet and position 12 (ac4C12) in eukaryotic tRNASer and tRNALeu. The biochemical mechanism, structural basis and functional significance of ac4C34 are well understood; however, despite being discovered in the 1960s and identification of Kre33/NAT10 and Tan1/THUMPD1 as modifying apparatuses, ac4C12 modification activity has never been reconstituted for nearly six decades. Here, we successfully reconstituted the ac4C12 modification activity of yeast Kre33 and Tan1. Biogenesis of ac4C12 is primarily dependent on a minimal set of elements, including a canonical acceptor stem, the presence of the 11CCG13 motif and correct D-arm orientation, indicating a molecular ruler mechanism. A single A13G mutation conferred ac4C12 modification to multiple non-substrate tRNAs. Moreover, we were able to introduce ac4C modifications into small RNAs. ac4C12 modification contributed little to tRNA melting temperature and aminoacylation in vitro and in vivo. Collectively, our results realize in vitro activity reconstitution, delineate tRNA substrate selection mechanism for ac4C12 biogenesis and develop a valuable system for preparing acetylated tRNAs as well as non-tRNA RNA species, which will advance the functional interpretation of the acetylation in RNA structures and functions.


Subject(s)
RNA, Transfer , RNA-Binding Proteins , Saccharomyces cerevisiae Proteins , Acetylation , Mutation , Nucleic Acid Conformation , RNA Processing, Post-Transcriptional , RNA, Transfer/metabolism , RNA, Transfer/genetics , RNA, Transfer/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , RNA-Binding Proteins/metabolism
6.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 541-545, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38660864

ABSTRACT

OBJECTIVE: To explore the feasibility of establishing combat readiness blood bank with low titer group O whole blood and group A plasma. METHODS: The Galileo automatic blood analyzer was used to detect the titers of IgM anti-A and anti-B antibodies in the samples of group O blood donors and IgM anti-B titer in the samples of group A blood donors. Group O blood donors with antibody titers below 128 were selected and included in the mobile blood bank for combat readiness, group A plasma with anti-B titer lower than 128 and group O whole blood with antibody titers below 128 were included in the combat readiness entity blood bank. RESULTS: A total of 1 452 group O blood donors were selected, and the anti-A/B antibody titers were detected. Both antibody titers were distributed below 512, and both peak values of sample distribution were at titer 4. The proportion of samples with titers>128 for both antibodies was relatively low. There was a significant positive correlation between the titers of the two antibodies (r =0.383), and the proportion of samples with IgM anti-A titer higher than IgM anti-B titer was relatively high. 1 335(91.94%) group O blood donors with IgM anti-A and anti-B antibody titers <128 could be included in the mobile blood bank. The anti-B titer of group A blood was detected in 512 cases and the results showed that as the antibody titer increased, the proportion of blood donors gradually decreased. 99.8% of group A blood donors had anti-B antibody titer less than 128, and only one case did not meet the inclusion criteria. CONCLUSION: The proportion of group O blood donors whose whole blood meet the low antibody titer standard is high, and almost all plasma of group A blood donors meet the low titer standard, which improves the blood supply rate in emergencies.


Subject(s)
ABO Blood-Group System , Blood Banks , Blood Donors , Immunoglobulin M , Humans , ABO Blood-Group System/immunology , Immunoglobulin M/blood , Feasibility Studies , Blood Grouping and Crossmatching , Plasma
7.
Nanomaterials (Basel) ; 14(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38668216

ABSTRACT

Compared to SnTe and PbTe base materials, the GeTe matrix exhibits a relatively high Seebeck coefficient and power factor but has garnered significant attention due to its poor thermal transport performance and environmental characteristics. As a typical p-type IV-VI group thermoelectric material, W-doped GeTe material can bring additional enhancement to thermoelectric performance. In this study, the introduction of W, Ge1-xWxTe (x = 0, 0.002, 0.005, 0.007, 0.01, 0.03) resulted in the presence of high-valence state atoms, providing additional charge carriers, thereby elevating the material's power factor to a maximum PFpeak of approximately 43 µW cm-1 K-2, while slightly optimizing the Seebeck coefficient of the solid solution. Moreover, W doping can induce defects and promote slight rhombohedral distortion in the crystal structure of GeTe, further reducing the lattice thermal conductivity κlat to as low as approximately 0.14 W m-1 K-1 (x = 0.002 at 673 K), optimizing it to approximately 85% compared to the GeTe matrix. This led to the formation of a p-type multicomponent composite thermoelectric material with ultra-low thermal conductivity. Ultimately, W doping achieves the comprehensive enhancement of the thermoelectric performance of GeTe base materials, with the peak ZT value of sample Ge0.995W0.005Te reaching approximately 0.99 at 673 K, and the average ZT optimized to 0.76 in the high-temperature range of 573-723 K, representing an increase of approximately 17% compared to pristine GeTe within the same temperature range.

9.
J Sci Food Agric ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38567792

ABSTRACT

BACKGROUND: This study explored the denaturation of 11S globulin, a protein known for its diverse functional properties in soy protein applications, at pH 3.0 and pH 10.0, followed by a gradual return to pH 7.0 to facilitate renaturation. It investigated the structural and functional changes during renaturation induced by a change in pH, revealing the stabilization mechanism of 11S globulin. RESULTS: The findings revealed that during pH adjustment to neutral, the denatured soybean 11S globulin - resulting from alkaline (pH 10.0) or acidic (pH 3.0) treatments - experienced a refolding of its extended tertiary structure to varying extents. The particle size and the proportions of α-helix and ß-sheet in the secondary structure aligned progressively with those of the natural-state protein. However, for the alkali-denatured 11S, the ß-sheet content decreased upon adjustment to neutral, whereas an increase was observed for the acid-denatured 11S. In terms of functional properties, after alkaline denaturation, the foaming capacity (FC) and emulsifying activity index (EAI) of 11S increased by 1.4 and 1.2 times, respectively, in comparison with its native state. The solubility, foamability, and emulsifiability of the alkali-denatured 11S gradually diminished during renaturation but remained superior to those of the native state. Conversely, these properties showed an initial decline, followed by an increase during renaturation triggered by pH neutralization. CONCLUSIONS: This research contributes to the enhancement of protein functionality, offering a theoretical foundation for the development of functional soy protein products and expanding their potential applications. © 2024 Society of Chemical Industry.

10.
Int J Mol Sci ; 25(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38674133

ABSTRACT

The unique zigzag-patterned tea plant is a rare germplasm resource. However, the molecular mechanism behind the formation of zigzag stems remains unclear. To address this, a BC1 genetic population of tea plants with zigzag stems was studied using histological observation and bulked segregant RNA-seq. The analysis revealed 1494 differentially expressed genes (DEGs) between the upright and zigzag stem groups. These DEGs may regulate the transduction and biosynthesis of plant hormones, and the effects on the phenylpropane biosynthesis pathways may cause the accumulation of lignin. Tissue sections further supported this finding, showing differences in cell wall thickness between upright and curved stems, potentially due to lignin accumulation. Additionally, 262 single-nucleotide polymorphisms (SNPs) across 38 genes were identified as key SNPs, and 5 genes related to zigzag stems were identified through homologous gene function annotation. Mutations in these genes may impact auxin distribution and content, resulting in the asymmetric development of vascular bundles in curved stems. In summary, we identified the key genes associated with the tortuous phenotype by using BSR-seq on a BC1 population to minimize genetic background noise.


Subject(s)
Camellia sinensis , Gene Expression Regulation, Plant , Polymorphism, Single Nucleotide , RNA-Seq , Camellia sinensis/genetics , Camellia sinensis/metabolism , Plant Stems/genetics , Plant Stems/metabolism , Mutation , Phenotype , Lignin/metabolism , Lignin/biosynthesis , Transcriptome/genetics , Gene Expression Profiling/methods , Plant Proteins/genetics , Plant Proteins/metabolism
11.
Neurochem Res ; 49(7): 1720-1734, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38520637

ABSTRACT

Vascular dementia (VaD) has a serious impact on the patients' quality of life. Icariin (Ica) possesses neuroprotective potential for treating VaD, yet its oral bioavailability and blood-brain barrier (BBB) permeability remain challenges. This research introduced a PEG-PLGA-loaded chitosan hydrogel-based binary formulation tailored for intranasal delivery, enhancing the intracerebral delivery efficacy of neuroprotective agents. The formulation underwent optimization to facilitate BBB crossing, with examinations conducted on its particle size, morphology, drug-loading capacity, in vitro release, and biodistribution. Using the bilateral common carotid artery occlusion (BCCAO) rat model, the therapeutic efficacy of this binary formulation was assessed against chitosan hydrogel and PEG-PLGA nanoparticles loaded with Ica. Post-intranasal administration, enhanced cognitive function was evident in chronic cerebral hypoperfusion (CCH) rats. Further mechanistic evaluations, utilizing immunohistochemistry (IHC), RT-PCR, and ELISA, revealed augmented transcription of synaptic plasticity-associated proteins like SYP and PSD-95, and a marked reduction in hippocampal inflammatory markers such as IL-1ß and TNF-α, highlighting the formulation's promise in alleviating cognitive impairment. The brain-derived neurotrophic factor (BDNF)/tropomyosin related kinase B (TrkB) pathway was activated significantly in the binary formulation compared with the other two. Our study demonstrates that the intranasal application of chitosan hydrogel loaded with Ica-encapsulated PEG-PLGA could effectively deliver Ica into the brain and enhance its neuroprotective effect.


Subject(s)
Brain-Derived Neurotrophic Factor , Dementia, Vascular , Flavonoids , Rats, Sprague-Dawley , Receptor, trkB , Signal Transduction , Animals , Flavonoids/pharmacology , Flavonoids/administration & dosage , Flavonoids/therapeutic use , Dementia, Vascular/drug therapy , Dementia, Vascular/metabolism , Male , Brain-Derived Neurotrophic Factor/metabolism , Receptor, trkB/metabolism , Signal Transduction/drug effects , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cognition/drug effects , Nanoparticles/chemistry , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Rats , Polyethylene Glycols/chemistry , Chitosan/chemistry , Administration, Intranasal , Nanoparticle Drug Delivery System , Polyesters
12.
Cell Mol Life Sci ; 81(1): 147, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502309

ABSTRACT

GABAergic interneurons are poised with the capacity to shape circuit output via inhibitory gating. How early in the development of medial vestibular nucleus (MVN) are GABAergic neurons recruited for feedforward shaping of outputs to higher centers for spatial navigation? The role of early GABAergic transmission in assembling vestibular circuits for spatial navigation was explored by neonatal perturbation. Immunohistochemistry and confocal imaging were utilized to reveal the expression of parvalbumin (PV)-expressing MVN neurons and their perineuronal nets. Whole-cell patch-clamp recording, coupled with optogenetics, was conducted in vitro to examine the synaptic function of MVN circuitry. Chemogenetic targeting strategy was also employed in vivo to manipulate neuronal activity during navigational tests. We found in rats a neonatal critical period before postnatal day (P) 8 in which competitive antagonization of GABAergic transmission in the MVN retarded maturation of inhibitory neurotransmission, as evidenced by deranged developmental trajectory for excitation/inhibition ratio and an extended period of critical period-like plasticity in GABAergic transmission. Despite increased number of PV-expressing GABAergic interneurons in the MVN, optogenetic-coupled patch-clamp recording indicated null-recruitment of these neurons in tuning outputs along the ascending vestibular pathway. Such perturbation not only offset output dynamics of ascending MVN output neurons, but was further accompanied by impaired vestibular-dependent navigation in adulthood. The same perturbations were however non-consequential when applied after P8. Results highlight neonatal GABAergic transmission as key to establishing feedforward output dynamics to higher brain centers for spatial cognition and navigation.


Subject(s)
Spatial Navigation , Rats , Animals , Interneurons , Synaptic Transmission , Vestibular Nuclei/metabolism , GABAergic Neurons
13.
J Med Case Rep ; 18(1): 89, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38444013

ABSTRACT

BACKGROUND: Fecal impaction is a digestive system disease, that is most common in the elderly population and becomes more prevalent with increasing age. Manual removal can successfully remove the impaction in 80% of fecal impaction cases. In severe cases, endoscopy and surgery may be necessary. CASE PRESENTATION: A 78-year-old Han Chinese man living in a nursing home was diagnosed with fecal impaction; his initial symptom was overflow diarrhea, which is a rare occurrence with regard to fecal impaction. Nevertheless, we were able to effectively treat this situation by employing a new medical device that presents a novel method for addressing fecal impaction. CONCLUSION: Early identification of fecal impaction with atypical symptoms is crucial to provide proper emergency management. A safe and noninvasive treatment method, especially for elderly patients with fecal impaction, should be chosen.


Subject(s)
Fecal Impaction , Male , Humans , Aged , Fecal Impaction/complications , Fecal Impaction/diagnostic imaging , Fecal Impaction/therapy , Asian People , Diarrhea/etiology , Diarrhea/therapy
14.
J Environ Manage ; 353: 120233, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38330838

ABSTRACT

Methane (CH4) emissions from manure management on livestock farms are a key source of greenhouse gas emissions in some regions and for some production systems, and the opportunities for mitigation may be significant if emissions can be adequately documented. We investigated a method for estimating CH4 emissions from liquid manure (slurry) that is based on anaerobic incubation of slurry collected from commercial farms. Methane production rates were used to derive a parameter of the Arrhenius temperature response function, lnA', representing the CH4 production potential of the slurry at the time of sampling. Results were used for parameterization of an empirical model to estimate annual emissions with daily time steps, where CH4 emissions from individual sources (barns, outside storage tanks) can be calculated separately. A monitoring program was conducted in four countries, i.e., Denmark, Sweden, Germany and the Netherlands, during a 12-month period where slurry was sampled to represent barn and outside storage on finishing pig and dairy farms. Across the four countries, lnA' was higher in pig slurry compared to cattle slurry (p < 0.01), and higher in slurry from barns compared to outside storage (p < 0.01). In a separate evaluation of the incubation method, in-vitro CH4 production rates were comparable with in-situ emissions. The results indicate that lnA' in barns increases with slurry age, probably due to growth or adaptation of the methanogenic microbial community. Using lnA' values determined experimentally, empirical models with daily time steps were constructed for finishing pig and dairy farms and used for scenario analyses. Annual emissions from pig slurry were predicted to be 2.5 times higher than those from cattle slurry. Changing the frequency of slurry export from the barn on the model pig farm from 40 to 7 d intervals reduced total annual CH4 emissions by 46 %; this effect would be much less on cattle farms with natural ventilation. In a scenario with cattle slurry, the empirical model was compared with the current IPCC methodology. The seasonal dynamics were less pronounced, and annual CH4 emissions were lower than with the current methodology, which calls for further investigations. Country-specific models for individual animal categories and point sources could be a tool for assessing CH4 emissions and mitigation potentials at farm level.


Subject(s)
Greenhouse Gases , Manure , Animals , Swine , Cattle , Farms , Manure/analysis , Methane/analysis , Greenhouse Gases/analysis , Temperature
15.
Food Chem ; 442: 138615, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38309242

ABSTRACT

Rice gluten, as the hydrophobic protein, exhibits restricted application value in hydrophilic food, which may be enhanced through interaction with soybean 11S globulin, characterized by favorable functional properties. This study aims at revealing their interaction mechanism via multi-spectroscopy and molecular dynamics simulation. The formation and structural change of rice glutelin-soybean 11S globulin complexes were detected using fluorescence, ultra-violet and circular dichroism spectra. The addition of 11S globulin increased the contents of α-helix, ß-turn and random coil, but decreased ß-sheet content, and the change in secondary structure was correlated with particle size. Moreover, exposure of hydrophobic groups and formation of disulfide bonds occurred in the complexes. Molecular dynamics simulation verified these experimental results through analyses of root mean square deviation and fluctuation, hydrogen bond, secondary structure, and binding free energy analysis. This study contributes to expounding the interaction mechanism of protein and protein from the molecular level.


Subject(s)
Globulins , Oryza , Glutens/chemistry , Glycine max , Oryza/metabolism , Molecular Dynamics Simulation , Spectrometry, Fluorescence , Globulins/chemistry , Molecular Docking Simulation
16.
Int J Cardiol ; 403: 131886, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38382850

ABSTRACT

BACKGROUND: A novel automated method for measuring left ventricular (LV) global longitudinal strain (GLS) along the endocardium has advantages in terms of its rapid application and excellent reproducibility. However, it remains unclear whether the available normal range for conventional GLS using the manual method is applicable to the automated GLS method. This study aimed to compare automated GLS head-to-head with manual layer-specific GLS, and to identify whether a specialized normal reference range for automated GLS is needed and explore the main determinants. METHODS: In total, 1683 healthy volunteers (men, 43%; age, 18-80 years) were prospectively enrolled from 55 collaborating laboratories. LV GLS was measured using both manual layer-specific and automated methods. RESULTS: Automated GLS was higher than endocardial, mid-myocardial, and epicardial GLS. Women had a higher automated GLS than men. GLS had no significant age dependency in men, but first increased and then decreased with age in women. Accordingly, sex- and age-specific normal ranges for automated GLS were proposed. Moreover, GLS appeared to have different burdens in relation to dominant determinants between the sexes. GLS in men showed no dominant determinants; however, GLS in women correlated with age, body mass index, and heart rate. CONCLUSIONS: Using the novel automated method, was LV GLS higher than when using the manual GLS method. The normal ranges of automated GLS stratified according to sex and age were provided, with dominant determinants showing sex disparities that require full consideration in clinical practice.


Subject(s)
Echocardiography , Global Longitudinal Strain , Male , Humans , Female , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Reference Values , Echocardiography/methods , Ventricular Function, Left/physiology , Reproducibility of Results
17.
Ann Plast Surg ; 92(1S Suppl 1): S37-S40, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38285994

ABSTRACT

ABSTRACT: Wound soaking is a physical debridement method that helps reduce bacterial colonization and consequently promotes wound healing. Although soaking in povidone-iodine solution was ineffective in reducing bacterial colonization in acute trauma wounds, there is still a lack of evidence supporting the efficacy of this method in treating severe soft tissue infection. This study aimed to explore the effects of wound soaking in 1% dilute povidone-iodine solution on necrotizing fasciitis caused by diabetic foot ulcers. We retrospectively reviewed and finally included 153 patients who were admitted because of diabetic foot ulcers after undergoing fasciotomy for necrotizing infection from January 2018 to December 2021. Results showed no statistical difference in the outcomes between patients in the soaking and nonsoaking groups. End-stage renal disease (P = 0.029) and high serum C-reactive protein level (P = 0.007) were the only independent factors for below-knee amputation in the univariate and multivariate logistic regression analyses. Therefore, soaking diabetic wounds with severe infection in 1% dilute povidone-iodine solution may not reduce the hospital length of stay, risk of below-knee amputation, and readmission rate.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Fasciitis, Necrotizing , Humans , Povidone-Iodine/therapeutic use , Diabetic Foot/surgery , Fasciitis, Necrotizing/surgery , Retrospective Studies , Wound Healing
18.
Adv Mater ; 36(1): e2305882, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37690084

ABSTRACT

The coupling of different 2D materials (2DMs) to form van der Waals heterostructures (vdWHs) is a powerful strategy for adjusting the electronic properties of 2D semiconductors, for applications in opto-electronics and quantum computing. 2D molybdenum disulfide (MoS2 ) represents an archetypical semiconducting, monolayer thick versatile platform for the generation of hybrid vdWH with tunable charge transport characteristics through its interfacing with molecules and assemblies thereof. However, the physisorption of (macro)molecules on 2D MoS2 yields hybrids possessing a limited thermal stability, thereby jeopardizing their technological applications. Herein, the rational design and optimized synthesis of 2D covalent organic frameworks (2D-COFs) for the generation of MoS2 /2D-COF vdWHs exhibiting strong interlayer coupling effects are reported. The high crystallinity of the 2D-COF films makes it possible to engineer an ultrastable periodic doping effect on MoS2 , boosting devices' field-effect mobility at room temperature. Such a performance increase can be attributed to the synergistic effect of the efficient interfacial electron transfer process and the pronounced suppression of MoS2 's lattice vibration. This proof-of-concept work validates an unprecedented approach for the efficient modulation of the electronic properties of 2D transition metal dichalcogenides toward high-performance (opto)electronics for CMOS digital circuits.

19.
Clin Pediatr (Phila) ; 63(3): 313-317, 2024 03.
Article in English | MEDLINE | ID: mdl-37139808

ABSTRACT

The purpose of this study was to evaluate the relationship between dietary zinc intakes and skeletal muscle mass and strength in children and adolescents. A retrospective study was conducted using data on United States adolescents aged 8 to 19 years. Data were extracted from the National Health and Nutrition Examination Survey 2011-2014 cycles. Subjects were divided into 3 groups based on the tertiles of dietary zinc intakes. The levels of appendicular skeletal muscle mass divided by weight (ASM/Wt, %) and grip in subjects with the highest tertile were higher than those in subjects with the middle and lowest tertiles (P < .05). Dietary zinc intakes were positively correlated with ASM/Wt (r = .221, P < .001) and grip (r = 0.169, P < .001). After a multivariate analysis, dietary zinc intakes were still significantly associated with ASM/Wt (ß = 0.059, P < .001) and grip (ß = 0.245, P < .001). The present study demonstrates that dietary zinc intakes were positively associated with skeletal muscle mass and strength in children and adolescents.


Subject(s)
Muscle, Skeletal , Zinc , Child , Humans , Adolescent , United States , Retrospective Studies , Nutrition Surveys , Hand Strength
20.
J Sci Food Agric ; 104(4): 2484-2492, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37972116

ABSTRACT

BACKGROUND: It is well known that hemp proteins have the disadvantages of poor solubility and poor emulsification. To improve these shortcomings, an alkali covalent cross-linking method was used to prepare hemp protein isolate-epigallocatechin-3-gallate biopolymer (HPI-EGCG) and the effects of different heat treatment conditions on the structure and emulsifying properties of the HPI-EGCG covalent complex were studied. RESULTS: The secondary and tertiary structures, solubility, and emulsification ability of the HPI-EGCG complexes were evaluated using particle size, zeta potential, circular dichroism (CD), and fluorescence spectroscopy indices. The results showed that the absolute value of zeta potential of HPI-EGCG covalent complex was the largest, 18.6 mV, and the maximum binding amount of HPI to EGCG was 29.18 µmol g-1 . Under heat treatment at 25-35 °C, the α-helix content was reduced from 1.87% to 0%, and the ß-helix content was reduced from 82.79% to 0% after the covalent binding of HPI and EGCG. The solubility and emulsification properties of the HPI-EGCG covalent complexes were improved significantly, and the emulsification activity index (EAI) and emulsion stability index (ESI) were increased by 2.77-fold and 1.21-fold, respectively. CONCLUSION: A new HPI-EGCG covalent complex was developed in this study to provide a theoretical basis for the application of HPI-EGCG in food industry. © 2023 Society of Chemical Industry.


Subject(s)
Cannabis , Catechin , Catechin/analogs & derivatives , Cannabis/chemistry , Heating , Antioxidants/chemistry , Catechin/chemistry , Biopolymers
SELECTION OF CITATIONS
SEARCH DETAIL
...