Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 180(3): 308-329, 2023 02.
Article in English | MEDLINE | ID: mdl-36166825

ABSTRACT

BACKGROUND AND PURPOSE: Astrocytic nuclear factor erythroid-derived 2-related factor 2 (Nrf2) is a potential therapeutic target of ischaemic preconditioning (IPC). Icariside II (ICS II) is a naturally occurring flavonoid derived from Herba Epimedii with Nrf2 induction potency. This study was designed to clarify if exposure to ICS II mimicks IPC neuroprotection and if Nrf2 from astrocytes contributes to ICS II preconditioning against ischaemic stroke. EXPERIMENTAL APPROACH: Mice with transient middle cerebral artery occlusion (MCAO)-induced focal cerebral ischaemia and primary astrocytes challenged with oxygen-glucose deprivation (OGD) were used to explore the neuroprotective effect of ICS II preconditioning. Additionally, Nrf2-deficient mice were pretreated with ICS II to determine whether ICS II exerts its neuroprotection by activating Nrf2. KEY RESULTS: ICS II pretreatment mitigated cerebral injury in the mouse model of ischaemic stroke along with improving long-term recovery. Furthermore, proteomics screening identified Nrf2 as a crucial gene evoked by ICS II treatment and required for the anti-oxidative effect and anti-inflammatory effect of ICS II. Also, ICS II directly bound to Nrf2 and reinforced the transcriptional activity of Nrf2 after MCAO. Moreover, ICS II pretreatment exerted cytoprotective effects on astrocyte cultures following lethal OGD exposure, by promoting Nrf2 nuclear translocation and activating the OXPHOS/NF-κB/ferroptosis axis, while neuroprotection was decreased in Nrf2-deficient mice and Nrf2 siRNA blocked effects of ICS II. CONCLUSION AND IMPLICATIONS: ICS II preconditioning provides robust neuroprotection against ischaemic stroke via the astrocytic Nrf2-mediated OXPHOS/NF-κB/ferroptosis axis. Thus, ICS II could be a promising Nrf2 activator to treat ischaemic stroke.


Subject(s)
Brain Ischemia , Ferroptosis , Ischemic Stroke , Neuroprotective Agents , Stroke , Mice , Animals , NF-kappa B/metabolism , Neuroprotection , NF-E2-Related Factor 2/metabolism , Signal Transduction , Brain Ischemia/drug therapy , Brain Ischemia/prevention & control , Brain Ischemia/metabolism , Stroke/drug therapy , Stroke/prevention & control , Flavonoids/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
2.
Front Pharmacol ; 13: 913367, 2022.
Article in English | MEDLINE | ID: mdl-35814232

ABSTRACT

Nrf2-mediated oxidative stress is a promising target of exhaustive exercise-induced fatigue (EEIF). Trilobatin (TLB) is a naturally occurring food additive with antioxidant effect and Nrf2 activation potency. The present study aimed to investigate the effect of TLB on EEIF and elucidate its underlying mechanism. Our results showed that TLB exerted potent anti-EEIF effect, as reflected by the rope climbing test and exhaustive swimming test. Moreover, TLB also effectively reduced the levels of lactate, creatine kinase, and blood urea nitrogen, and increased liver glycogen and skeletal muscle glycogen in mice after EEIF insult. Additionally, TLB also balanced the redox status as evidenced by decreasing the generation of reactive oxygen species and improving the antioxidant enzyme activities including superoxide dismutase, catalase, and glutathione peroxidase, as well as the level of glutathione both in the tissue of muscle and myocardium. Furthermore, TLB promoted nuclear factor erythroid 2-related factor 2 (Nrf2) from the cytoplasm to the nucleus, and upregulated its downstream antioxidant response element (ARE) including quinone oxidoreductase-1 and heme oxygenase-1. Intriguingly, TLB also upregulated the GPx4 protein expression and reduced iron overload in mice after EEIF insult. Encouragingly, the beneficial effect of TLB on EEIF-induced oxidative stress and ferroptosis were substantially abolished in Nrf2-deficient mice. In conclusion, our findings demonstrate, for the first time, that TLB alleviates EEIF-induced oxidative stress through mediating Nrf2/ARE/ferroptosis axis.

3.
Eur J Pharmacol ; 918: 174563, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-34942162

ABSTRACT

Oxidative stress plays a crucial role in fatigue, thus it is of significance to develop safe and efficient antioxidant to prevent fatigue. Phlorizin (PHZ) is a major active ingredient of dihydrochalcone from Lithocarpus polystachyus Rehd., which has already been approved as a new food material in China since 2017. The current study was designed to investigate the effect of PHZ on fatigue, and further to elucidate its possible underlying mechanism. Our results revealed that PHZ exerted beneficial effect on exhaustive exercise-induced fatigue in mice, as reflected by rotarod test and exhaustive swimming test. Moreover, PHZ also effectively decreased the levels of blood urea nitrogen, creatine kinase and plasma lactic acid, increased the liver glycogen and skeletal muscle glycogen of fatigued mice, as evidenced by enzyme linked immunosorbent assay. PHZ balanced the redox status through reducing generation of reactive oxygen species, enhancing the activities of antioxidative enzymes. Furthermore, PHZ not only increased the ratio of Bcl2/Bax, but also decreased the level of cleaved-caspase 3. Notably, PHZ facilitated nuclear factor erythroid 2-related factor 2 (Nrf2) translocated from cytoplasm to nucleus, and up-regulated its downstream antioxidant response element including heme oxygenase-1 and NADPH quinone oxidoreductase-1. Intriguingly, PHZ directly bound to Nrf2, as evidenced by molecular docking, and the anti-fatigue effects of PHZ were almost abolished in Nrf2 deficient mice. In summary, our findings suggest that PHZ might be a natural occurring antioxidant with safety profile to relieve fatigue via targeting Nrf2 to inhibit apoptosis.


Subject(s)
Muscle Fatigue/drug effects , NF-E2-Related Factor 2 , Oxidative Stress/drug effects , Phlorhizin/pharmacology , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Chalcones/pharmacology , Mice , Molecular Docking Simulation , NF-E2-Related Factor 2/antagonists & inhibitors , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction/drug effects , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...