Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 196
Filter
1.
Clin Chim Acta ; 558: 117899, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38574942

ABSTRACT

Acute myeloid leukemia (AML) is a hematologic malignancy with a high recurrence rate and poor long-term prognosis. DNA excision repair systems, such as base excision repair (BER) and nucleotide excision repair (NER), play a major role in maintaining genomic stability and integrity. Further intensive investigations are necessary to uncover additional AML prognosis loci. In this study, we analyzed 16 candidate SNPs within NER and BER pathways in AML patients. Our results showed the GT/GG genotype of the XPC rs2228001 polymorphism was significantly associated with WBC count in dominant models (OR = 0.41, 95 % CI = 0.18-0.96, p = 0.039). Additionally, the rs25487 and rs3213245 SNPs in the XRCC1 gene, in both co-dominant and dominant models, were significantly associated with PLT count in AML (p < 0.05). The GG genotype of rs1130409 in APEX1 was more prone to adverse cytogenetics in both the codominant and recessive models (p < 0.05). Furthermore, the GA genotypes of ERCC8 rs158572 in codominant model was significantly correlated with refractory group (p < 0.05). ERCC8 rs158572 and XRCC1 rs3213245 in both codominant and dominant models were significantly correlated with the MRD positivity (p < 0.05). Kaplan-Meier analysis revealed an link between overall survival (OS) and the co-dominant, dominant, and recessive models of rs2228001 in XPC. Additionally, patients with the GG and GT/GG genotype in the co-dominant, dominant model and recessive model in XPC rs2228001 exhibited significantly longer survival (p < 0.05). Multivariate Cox analyses indicated that rs2228001 in both co-dominant and dominant models were independent favorable factors impacting patient OS (OR < 1). Our findings suggest that genetic polymorphisms in DNA excision repair pathway genetic polymorphisms contribute to the chemosensitivity and prognosis of acute myeloid leukemia.


Subject(s)
DNA Repair , Leukemia, Myeloid, Acute , Polymorphism, Single Nucleotide , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/diagnosis , DNA Repair/genetics , Male , Female , Middle Aged , Prognosis , Adult , Aged , Young Adult , Adolescent , Excision Repair
2.
Leukemia ; 38(5): 1057-1071, 2024 May.
Article in English | MEDLINE | ID: mdl-38424136

ABSTRACT

Most forms of chemotherapy for acute myeloid leukemia (AML) are often ineffective in eliminating leukemic stem cells (LSCs), as their underlying mechanisms remain unclear. Here, we have identified circFAM193B, which regulates the redox biology of LSCs and is associated with unfavorable outcomes in AML patients. In vitro and in vivo assays suggested that circFAM193B significantly inhibits LSCs chemotherapy resistance and AML progression. Knockdown circFAM193B enhances mitochondrial OXPHOS function and inhibits the accumulation of reactive oxygen species and lipid peroxidation mediated by chemotherapy, which protects AML cells from oxidative stress-induced cell death. Mechanistically, circFAM193B physically interacts with arginine methyltransferase PRMT6 catalytic domain and enhances the transcription efficiency of key lipid peroxidation factor ALOX15 by decreasing H3R2me2a modification. In summary, we have identified circFAM193B was downregulated in LSCs to promote the survival of LSC by modulating energy metabolism and the redox balance in the postchemotherapy persistence of LSC. Our studies provide a conceptual advance and biological insights regarding the drug resistance of LSCs via circRNA mediated PRMT6-deposited methylarginine signaling.


Subject(s)
Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute , Lipid Peroxidation , Neoplastic Stem Cells , Nuclear Proteins , Protein-Arginine N-Methyltransferases , Humans , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Mice , Animals , Oxidative Stress , Cell Line, Tumor , Reactive Oxygen Species/metabolism
3.
Free Radic Biol Med ; 213: 36-51, 2024 03.
Article in English | MEDLINE | ID: mdl-38215892

ABSTRACT

Short-chain fatty acids (SCFAs), particularly propionate and butyrate, have been reported in many cancers. However, the relationship between propionate and acute myeloid leukemia (AML) remains unclear. Additionally, Acyl-CoA synthetase long chain family member 4 (ACSL4) has been reported to regulate immunity in solid tumors, but there are still many gaps to be filled in AML. Here, we discovered the underlying mechanism of propionate and ACSL4-mediated ferroptosis for immunotherapy. Our results showed that the level of propionate in the AML patients' feces was decreased, which was correlated to gut microbiota dysbiosis. Moreover, we demonstrated that propionate suppressed AML progression both in vivo and in vitro. In mechanism, propionate induced AML cells apoptosis and ferroptosis. The imbalance of reactive oxygen species (ROS) and redox homeostasis induced by propionate caused mitochondrial fission and mitophagy, which enhanced ferroptosis and apoptosis. Furthermore, ACSL4-mediated ferroptosis caused by propionate increased the immunogenicity of AML cells, induced the release of damage-associated molecular patterns (DAMPs), and promoted the maturation of dendritic cells (DCs). The increased level of immunogenicity due to ferroptosis enable propionate-based whole-cell vaccines to activate immunity, thus further facilitating effective killing of AML cells. Collectively, our study uncovers a crucial role for propionate suppresses AML progression by inducing ferroptosis and the potential mechanisms of ACSL4-mediated ferroptosis in the regulation of AML immunity.


Subject(s)
Ferroptosis , Leukemia, Myeloid, Acute , Humans , Propionates/pharmacology , Mitophagy , Apoptosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology
4.
Clin Chim Acta ; 554: 117789, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38246208

ABSTRACT

Gene mutations are a pivotal component of the pathogenesis of MDS, and they hold profound prognostic significance for predicting treatment responses and survival outcomes. However, reports about mutation patterns in Chinese MDS patients are limited. In this study, we analyzed the genetic mutation of 23 genes in 231 patients with MDS using next-generation sequencing (NGS) technology, and explored the characteristics of gene mutations in MDS patients and their associations with clinical outcomes, survival, and transformation outcomes. Our results showed that 68.83% patients had at least one gene mutation, and the most common mutations were ASXL1 (21.65%), SF3B1 (17.32%), U2AF1 (16.02%), TET2 (14.72%) and TP53 (8.66%). We also showed that the genetic mutations of TP53, U2AF1 and DNMT3A are independent risk factors for death in patients with MDS, and the ETV6 gene mutation was an independent risk factor for the transformation of MDS patients to AML through the univariate and multivariate Cox regression analysis model. Additionally, the study developed a risk score based on gene mutation data that demonstrated robust predictive capability and stability for the overall survival of MDS patients. Our research provided a strong theoretical basis for the establishment of personalized treatment and prognostic risk assessment models for Chinese MDS patients.


Subject(s)
Myelodysplastic Syndromes , Humans , Splicing Factor U2AF/genetics , Mutation , Prognosis , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Transcription Factors/genetics
6.
J Cancer Res Clin Oncol ; 149(19): 17307-17318, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37819582

ABSTRACT

PURPOSE: Stem cells are known to play an important role in tumor treatment and many of them have shown tumor-suppressing ability in different cancers; however, whether hematopoietic stem cells (HSCs) have growth-inhibiting effects on leukemia cells has not been fully evaluated. Herein, we aimed to demonstrate the growth-restraining function of HSCs in acute leukemia treatment. METHODS: Cell fusion experiment was conducted by PEG-1500. The viability, proliferation, apoptosis and differentiation of leukemia cells were evaluated by cell counting, CCK-8 and flow cytometry analysis. The morphological changes were imaged using a fluorescence microscope. The expression of genes was detected by quantitative reverse transcription PCR (qRT-PCR). RESULTS: We observed that HSCs and their lytic extracts had the capability to suppress leukemia cells proliferation, promote apoptosis and especially induce acute myelogenous leukemia (AML) cells differentiation, which might have an effect on differentiation therapy to leukemia especially AML treatment. The expression levels of Bcl-2, Survivin decreased and Bax increased following HSCs extracts treatment. Furthermore, the expression of inflammatory cytokines also changed in AML cells which might have to do with the mechanism of HSCs/extracts suppressing effect. CONCLUSION: HSCs and their extracts can suppress the proliferation of leukemia cells and enhance the differentiation of AML cells and using the extracts of HSCs might be a probable therapeutic option for acute leukemia.


Subject(s)
Hematopoietic Stem Cells , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/pathology , Cell Differentiation , Cell Proliferation , Apoptosis/genetics
7.
Nat Commun ; 14(1): 6907, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37903757

ABSTRACT

CCAAT/enhancer binding protein α (C/EBPα) regulates myeloid differentiation, and its dysregulation contributes to acute myeloid leukaemia (AML) progress. Clarifying its functional implementation mechanism is of great significance for its further clinical application. Here, we show that C/EBPα regulates AML cell differentiation through liquid-liquid phase separation (LLPS), which can be disrupted by C/EBPα-p30. Considering that C/EBPα-p30 inhibits the functions of C/EBPα through the LZ region, a small peptide TAT-LZ that could instantaneously interfere with the homodimerization of C/EBPα-p42 was constructed, and dynamic inhibition of C/EBPα phase separation was observed, demonstrating the importance of C/EBPα-p42 homodimers for its LLPS. Mechanistically, homodimerization of C/EBPα-p42 mediated its phosphorylation at the novel phosphorylation site S16, which promoted LLPS and subsequent AML cell differentiation. Finally, decreasing the endogenous C/EBPα-p30/C/EBPα-p42 ratio rescued the phase separation of C/EBPα in AML cells, which provided a new insight for the treatment of the AML.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha , Leukemia, Myeloid, Acute , Humans , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Cell Differentiation , Hematopoiesis , Leukemia, Myeloid, Acute/metabolism , Phosphorylation
8.
Biomark Res ; 11(1): 89, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37798791

ABSTRACT

Mitochondria are energy-generated organelles and take an important part in biological metabolism. Mitochondria could be transferred between cells, which serves as a new intercellular communication. Mitochondrial transfer improves mitochondrial defects, restores the biological functions of recipient cells, and maintains the high metabolic requirements of tumor cells as well as drug resistance. In recent years, it has been reported mitochondrial transfer between cells of bone marrow microenvironment and hematological malignant cells play a critical role in the disease progression and resistance during chemotherapy. In this review, we discuss the patterns and mechanisms on mitochondrial transfer and their engagement in different pathophysiological contexts and outline the latest knowledge on intercellular transport of mitochondria in hematological malignancies. Besides, we briefly outline the drug resistance mechanisms caused by mitochondrial transfer in cells during chemotherapy. Our review demonstrates a theoretical basis for mitochondrial transfer as a prospective therapeutic target to increase the treatment efficiency in hematological malignancies and improve the prognosis of patients.

9.
Biomark Res ; 11(1): 59, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37280654

ABSTRACT

Aberrant expression of circRNAs has been proven to play a crucial role in the progression of acute myeloid leukemia (AML); however, its regulatory mechanism remains unclear. Herein, we identified a novel circRNA, Circ_0001187, which is downregulated in AML patients, and its low level contributes to a poor prognosis. We further validated their expression in large-scale samples and found that only the expression of Circ_0001187 was significantly decreased in newly diagnosed (ND) AML patients and increased in patients with hematological complete remission (HCR) compared with controls. Knockdown of Circ_0001187 significantly promoted proliferation and inhibited apoptosis of AML cells in vitro and in vivo, whereas overexpression of Circ _0001187 exerted the opposite effects. Interestingly, we found that Circ_0001187 decreases mRNA m6A modification in AML cells by enhancing METTL3 protein degradation. Mechanistically, Circ_0001187 sponges miR-499a-5p to enhance the expression of E3 ubiquitin ligase RNF113A, which mediates METTL3 ubiquitin/proteasome-dependent degradation via K48-linked polyubiquitin chains. Moreover, we found that the low expression of Circ _0001187 is regulated by promoter DNA methylation and histone acetylation. Collectively, our findings highlight the potential clinical implications of Circ _0001187 as a key tumor suppressor in AML via the miR-499a-5p/RNF113A/METTL3 pathway.

10.
Cancer Med ; 12(14): 14960-14978, 2023 07.
Article in English | MEDLINE | ID: mdl-37329186

ABSTRACT

BACKGROUND: Though immunological abnormalities have been proven involved in the pathogenesis of lymphoma, the underlying mechanism remains unclear. METHODS: We investigated 25 single nucleotide polymorphisms (SNPs) of 21 immune-related genes and explored their roles in lymphoma. The genotyping assay of the selected SNPs was used by the Massarray platform. Logistic regression and Cox proportional hazards models were used to analyze the associations of SNPs and the susceptibility of lymphoma or clinical characteristics of lymphoma patients. In addition, Least Absolute Shrinkage and Selection Operator regression was used to further analyze the relationships with the survival of lymphoma patients and candidate SNPs, and the significant difference between genotypes was verified by the expression of RNA. RESULTS: By comparing 245 lymphoma patients with 213 healthy controls, we found eight important SNPs related to the susceptibility of lymphoma, which were involved in JAK-STAT, NF-κB and other functional pathways. We further analyzed the relationships between SNPs and clinical characteristics. Our results showed that both IL6R (rs2228145) and STAT5B (rs6503691) significantly contributed to the Ann Arbor stages of lymphoma. And the STAT3 (rs744166), IL2 (rs2069762), IL10 (rs1800871), and PARP1 (rs907187) manifested a significant relationship with the peripheral blood counts in lymphoma patients. More importantly, the IFNG (rs2069718) and IL12A (rs6887695) were associated with the overall survival (OS) of lymphoma patients remarkably, and the adverse effects of GC genotypes could not be offset by Bonferroni correction for multiple comparison in rs6887695 especially. Moreover, we determined that the mRNA expression levels of IFNG and IL12A were significantly decreased in patients with shorter-OS genotypes. CONCLUSIONS: We used multiple methods of analysis to predict the correlations between lymphoma susceptibility, clinical characteristics or OS with SNPs. Our findings reveal that immune-related genetic polymorphisms contribute to the prognosis and treatment of lymphoma, which may serve as promising predictive targets.


Subject(s)
Lymphoma , Humans , Genotype , Lymphoma/genetics , Polymorphism, Single Nucleotide , Prognosis , Proportional Hazards Models , Genetic Predisposition to Disease , Case-Control Studies
11.
Mol Biol Rep ; 50(8): 6601-6610, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37344641

ABSTRACT

BACKGROUND: Mutations in splicing factor (SF) genes are frequently detected in myelodysplastic syndrome, but their clinical and prognostic relevance in acute myeloid leukemia (AML) have rarely been reported. METHODS: A total of 368 newly diagnosed non-M3 AML patients were included in this study. Next generation sequencing including four SF genes was performed on the genomicDNA. The clinical features and survival were analyzed using statistical analysis. RESULTS: We found that 64 of 368 patients harbored SF mutations. The SF mutations were much more frequently found in older or male patients. SRSF2 mutations were shown obviously co-existed with IDH2 mutation. The level of measurable residual disease after first chemotherapy was higher in SF-mutated patients compared to that in SF-wild patients, while the complete remission rate was significantly decreased. And the overall survival of SF-mutated patients was shorter than that of SF-wild patients. Moreover, our multivariable analysis suggests that the index of male, Kit mutation or ZRSR2 mutation was the independent risk factor for overall survival. SRSF2mut was associated with older age, higher proportion of peripheral blasts or abnormal cell proportion by flow cytometry. CONCLUSION: SF mutation is a distinct subgroup of AML frequently associated with clinic-biological features and poor outcome. SRSF2mut could be potential targets for novel treatment in AML.


Subject(s)
Leukemia, Myeloid, Acute , Spliceosomes , Humans , Male , Aged , Spliceosomes/genetics , Prognosis , Serine-Arginine Splicing Factors/genetics , RNA Splicing Factors/genetics , Leukemia, Myeloid, Acute/genetics , Mutation/genetics
12.
ACS Appl Mater Interfaces ; 15(23): 27624-27637, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37249260

ABSTRACT

Acute myeloid leukemia (AML) is rapidly progressed hematologic malignancy with relapsed and refractory characteristics. Cytarabine combined with the BCL2 inhibitor venetoclax showed impressive response rates in the treatment of relapsed/refractory acute myeloid leukemia (R/R AML), while it requires complicated administration regimens and brings added toxicity. In this work, we synthesized a mercaptopropionic acid-substituted derivative of Ara-C (Ara-SH) and used it as the trigger to fabricate a smart cytarabine and venetoclax-coloaded nanoparticle (AV-NP) through self-assembly. The AV-NP characterized with redox-responsive drug release, rapid uptake by leukemia cells, and long retention in circulation had the potential to accumulate in leukemia-enriched sites. It generated a remarkable synergistic effect with higher antileukemia activity in vitro and better safety in the hematologic system compared with free drugs and significantly improved the therapeutic effect on orthotopic AML mice in vivo. These similar results were also confirmed in primary cells from R/R-AML patients. Besides, the AV-NP has the superiority of facile fabrication and generalizability, rendering it easy for clinical translation.


Subject(s)
Cytarabine , Leukemia, Myeloid, Acute , Animals , Mice , Cytarabine/pharmacology , Cytarabine/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Sulfonamides/therapeutic use , Antineoplastic Combined Chemotherapy Protocols
13.
Sci Rep ; 13(1): 8606, 2023 05 27.
Article in English | MEDLINE | ID: mdl-37244946

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is malignant hyperplasia of B lymphocytes and standard care cannot satisfactorily meet clinical needs. Potential diagnostic and prognostic DLBCL biomarkers are needed. NCBP1 could bind to the 5'-end cap of pre-mRNAs to participate in RNA processing, transcript nuclear export and translation. Aberrant NCBP1 expression is involved in the pathogenesis of cancers, but little is known about NCBP1 in DLBCL. We proved that NCBP1 is significantly elevated in DLBCL patients and is associated with their poor prognosis. Then, we found that NCBP1 is important for the proliferation of DLBCL cells. Moreover, we verified that NCBP1 enhances the proliferation of DLBCL cells in a METTL3-dependent manner and found that NCBP1 enhances the m6A catalytic function of METTL3 by maintaining METTL3 mRNA stabilization. Mechanistically, the expression of c-MYC is regulated by NCBP1-enhanced METTL3, and the NCBP1/METTL3/m6A/c-MYC axis is important for DLBCL progression. We identified a new pathway for DLBCL progression and suggest innovative ideas for molecular targeted therapy of DLBCL.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Methyltransferases , Humans , Methyltransferases/genetics , Methyltransferases/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Lymphoma, Large B-Cell, Diffuse/genetics
14.
Adv Sci (Weinh) ; 10(19): e2205854, 2023 07.
Article in English | MEDLINE | ID: mdl-37072664

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignant blood disorder with a high rate of relapse. Patients relapse as a result of minimal residual disease (MRD), which originates from residual T-ALL cells in the bone marrow microenvironment (BMM). In the present study, it is observed that adipocytes increase dramatically in the BMM of T-ALL patients after exposure to chemotherapeutic drugs. Then, it is proved that adipocytes attract T-ALL cells by releasing CXCL13 and support leukemia cell survival by activating the Notch1 signaling pathway via DLL1 and Notch1 binding. Furthermore, it is verified that dexamethasone (DEX) induces adipogenic differentiation by enhancing the expression of SREBF1 in bone marrow mesenchymal stromal cells (BMSCs), and an SREBF1 inhibitor significantly decreases the adipogenic potential of BMSCs and the subsequent ability of adipocytes to support T-ALL cells in vitro and in vivo. These findings confirm that the differentiation of BMSCs to adipocytes induced by DEX contributes to MRD in T-ALL and provides an auxiliary clinical treatment to reduce the recurrence rate.


Subject(s)
Mesenchymal Stem Cells , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Cell Differentiation , Adipocytes/metabolism , Recurrence , Mesenchymal Stem Cells/metabolism , T-Lymphocytes , Tumor Microenvironment , Sterol Regulatory Element Binding Protein 1/metabolism
15.
J Biol Chem ; 299(1): 102787, 2023 01.
Article in English | MEDLINE | ID: mdl-36509141

ABSTRACT

Chemoresistance remains a major challenge in the current treatment of acute myeloid leukemia (AML). The bone marrow microenvironment (BMM) plays a complex role in protecting leukemia cells from chemotherapeutics, and the mechanisms involved are not fully understood. Antileukemia drugs kill AML cells directly but also damage the BMM. Here, we determined antileukemia drugs induce DNA damage in bone marrow stromal cells (BMSCs), resulting in resistance of AML cell lines to adriamycin and idarubicin killing. Damaged BMSCs induced an inflammatory microenvironment through NF-κB; suppressing NF-κB with small molecule inhibitor Bay11-7082 attenuated the prosurvival effects of BMSCs on AML cell lines. Furthermore, we used an ex vivo functional screen of 507 chemokines and cytokines to identify 44 proteins secreted from damaged BMSCs. Fibroblast growth factor-10 (FGF10) was most strongly associated with chemoresistance in AML cell lines. Additionally, expression of FGF10 and its receptors, FGFR1 and FGFR2, was increased in AML patients after chemotherapy. FGFR1 and FGFR2 were also widely expressed by AML cell lines. FGF10-induced FGFR2 activation in AML cell lines operates by increasing P38 MAPK, AKT, ERK1/2, and STAT3 phosphorylation. FGFR2 inhibition with small molecules or gene silencing of FGFR2 inhibited proliferation and reverses drug resistance of AML cells by inhibiting P38 MAPK, AKT, and ERK1/2 signaling pathways. Finally, release of FGF10 was mediated by ß-catenin signaling in damaged BMSCs. Our data indicate FGF10-FGFR2 signaling acts as an effector of damaged BMSC-mediated chemoresistance in AML cells, and FGFR2 inhibition can reverse stromal protection and AML cell chemoresistance in the BMM.


Subject(s)
Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute , Mesenchymal Stem Cells , Humans , Bone Marrow Cells/metabolism , DNA Damage , Fibroblast Growth Factor 10/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mesenchymal Stem Cells/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Stromal Cells/metabolism , Tumor Microenvironment , Paracrine Communication
17.
Adv Sci (Weinh) ; 10(2): e2201724, 2023 01.
Article in English | MEDLINE | ID: mdl-36478193

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with a poor prognosis, urging for novel therapeutic targets and treatment strategies. N6-methyladenosine (m6A) is a crucial methylation modification that affects the pathogenesis of leukemia by regulating the mRNA of key genes. Interferon regulatory factor 8 (IRF8) is a crucial transcription factor for hematological lineage commitment, but its role in T-ALL is unclear. Here, IRF8 is shown to suppress T-ALL. The expression of IRF8 is abnormally silenced in patients with T-ALL. Knockout of Irf8 significantly hastens the progression of Notch1-induced T-ALL in vivo. Overexpression of IRF8 suppresses the proliferation and invasion of T-ALL cells by inhibiting the phosphatidylinositol 3-kinase/AKT signaling pathway. The fat mass- and obesity-associated protein (FTO), an m6A demethylase, is responsible for directly binding to m6A sites in 3' untranslated region of IRF8 messenger RNA (mRNA) and inducing mRNA degradation via m6A modification. Targeting the FTO-IRF8 axis is used as a proof of concept therapy; inhibition of FTO's demethylase activity drastically alleviates the proliferation of leukemic cells and prolongs the survival of T-ALL mice by restoring IRF8 expression. This study elucidates the pathogenesis of T-ALL from the perspective of epitranscriptomics and provides new insight into the genetic mechanisms and targeted therapy of T-ALL.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Animals , Mice , Interferon Regulatory Factors/genetics , Mice, Knockout , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , RNA, Messenger , T-Lymphocytes
18.
Cancer ; 128(22): 3929-3942, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36197314

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) is a hematopoietic malignancy with a prognosis that varies with genetic heterogeneity of hematopoietic stem/progenitor cells (HSPCs). Induction chemotherapy with cytarabine and anthracycline has been the standard care for newly diagnosed AML, but about 30% of patients have no response to this regimen. The resistance mechanisms require deeper understanding. METHODS: In our study, using single-cell RNA sequencing, we analyzed the heterogeneity of bone marrow CD34+ cells from newly diagnosed patients with AML who were then divided into sensitive and resistant groups according to their responses to induction chemotherapy with cytarabine and anthracycline. We verified our findings by TCGA database, GEO datasets, and multiparameter flow cytometry. RESULTS: We established a landscape for AML CD34+ cells and identified HSPC types based on the lineage signature genes. Interestingly, we found a cell population with CRIP1high LGALS1high S100Ashigh showing features of granulocyte-monocyte progenitors was associated with poor prognosis of AML. And two cell populations marked by CD34+ CD52+ or CD34+ CD74+ DAP12+ were related to good response to induction therapy, showing characteristics of hematopoietic stem cells. CONCLUSION: Our study indicates the subclones of CD34+ cells confers for outcomes of AML and provides biomarkers to predict the response of patients with AML to induction chemotherapy.


Subject(s)
Induction Chemotherapy , Leukemia, Myeloid, Acute , Humans , Bone Marrow/pathology , Leukemia, Myeloid, Acute/therapy , Antigens, CD34/therapeutic use , Cytarabine/therapeutic use , Anthracyclines/therapeutic use
19.
Leukemia ; 36(11): 2586-2595, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36266324

ABSTRACT

Chemoresistant leukemia relapse is one of the most common causes of death for acute myeloid leukemia (AML) patients and the homing/engraftment in bone marrow (BM) are crucial steps for AML cells to acquire chemoresistance by interacting with stromal cell components. No crosstalk between m6A modification and homing/engraftment has been reported. Here, we performed comprehensive high-throughput analyses, including RNA sequencing of CR (complete remission) and relapsed AML patients, and reverse-phase protein arrays of chemoresistant cells to identify METTL3 as a key player regulating AML chemoresistance. Then, METTL3-mediated m6A modification was proved to induce the chemoresistance in vitro and in vivo. Furthermore, AML homing/engraftment was discovered being enhanced by upregulated-METTL3 in chemoresistant cells. And the homing/engraftment and drug-resistance associated phenotypes of chemoresistant cells could be reversed by a METTL3 inhibitor. Mechanistically, METTL3 extended the half-life of ITGA4 mRNA by m6A methylation, and then, increased expression of ITGA4 protein to enhance homing/engraftment of AML cells. The results provide insights into the function of m6A modification on the interaction between AML cells and BM niches and clarify the relationship between METTL3 and AML homing/engraftment, suggesting a therapeutic strategy for the treatment of refractory/relapsed AML with METTL3 inhibitors.


Subject(s)
Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute , Humans , Drug Resistance, Neoplasm/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Integrin alpha4 , RNA, Messenger/genetics , Methylation , Methyltransferases/genetics
20.
Front Cell Dev Biol ; 10: 978786, 2022.
Article in English | MEDLINE | ID: mdl-36313565

ABSTRACT

Acute myeloid leukemia (AML) is one of the most common hematopoietic malignancies in adults. The tumor microenvironment (TME) has a critical effect on AML occurrence, recurrence, and progression. The gene feline leukemia virus subgroup C cellular receptor family member 2 (FLVCR2) belongs to the major facilitator superfamily of transporter protein members, which is primarily involved in transporting small molecules. The potential role of FLVCR2 in the TME in AML has not been investigated. To clarify the expression and role of FLVCR2 in AML, we analyzed the Gene Expression Omnibus and The Cancer Genome Atlas databases and found that FLVCR2 mRNA expression significantly increased among patients with AML. Furthermore, based on an analysis of the Gene Expression Profiling Interactive Analysis database, FLVCR2 upregulation predicted dismal overall survival of patients with AML. Our validation analysis revealed the significant upregulation of FLVCR2 within the bone marrow of AML relative to healthy controls by western blotting and qPCR assays. Gene set enrichment analysis was conducted to explore FLVCR2's related mechanism in AML. We found that high FLVCR2 expression was related to infiltration degrees of immune cells and immune scores among AML cases, indicating that FLVCR2 possibly had a crucial effect on AML progression through the immune response. Specifically, FLVCR2 upregulation was negatively related to the immune infiltration degrees of activated natural killer cells, activated memory CD4+ T cells, activated dendritic cells, and CD8+ T cells using CIBERSORT analysis. According to the in vitro research, FLVCR2 silencing suppressed AML cell growth and promoted their apoptosis. This study provides insights into FLVCR2's effect on tumor immunity, indicating that it might serve as an independent prognostic biomarker and was related to immune infiltration within AML.

SELECTION OF CITATIONS
SEARCH DETAIL
...