Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 263(Pt 1): 129742, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38278389

ABSTRACT

Due to their excellent emulsification, biocompatibility, and biological activity, proteins are widely used as microcapsule wall materials for encapsulating drugs, natural bioactive substances, essential oils, probiotics, etc. In this review, we summarize the protein-based microcapsules, discussing the types of proteins utilized in microcapsule wall materials, the preparation process, and the main factors that influence their properties. Additionally, we conclude with examples of the vital role of protein-based microcapsules in advancing the food industry from primary processing to deep processing and their potential applications in the biomedical, chemical, and textile industries. However, the low stability and controllability of protein wall materials lead to degraded performance and quality of microcapsules. Protein complexes with polysaccharides or modifications to proteins are often used to improve the thermal instability, pH sensitivity, encapsulation efficiency and antioxidant capacity of microcapsules. In addition, factors such as wall material composition, wall material ratio, the ratio of core to wall material, pH, and preparation method all play critical roles in the preparation and performance of microcapsules. The application area and scope of protein-based microcapsules can be further expanded by optimizing the preparation process and studying the microcapsule release mechanism and control strategy.


Subject(s)
Oils, Volatile , Proteins , Capsules/chemistry , Polysaccharides
2.
Environ Sci Technol ; 58(5): 2260-2270, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38252093

ABSTRACT

Multiple pieces of evidence have shown that prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances (PFASs) is closely related to adverse birth outcomes for infants. However, difficult access to human samples limits our understanding of PFASs transport and metabolism across the human placental barrier, as well as the accurate assessment of fetal PFASs exposure. Herein, we assess fetal exposure to 28 PFASs based on paired serum, placenta, and meconium samples. Overall, 21 PFASs were identified first to be exposed to the fetus prenatally and to be metabolized and excreted by the fetus. In meconium samples, 25 PFASs were detected, with perfluorooctane sulfonate and perfluorohexane sulfonic acid being the dominant congeners, suggesting the metabolism and excretion of PFASs through meconium. Perfluoroalkyl sulfonic acids might be more easily eliminated through the meconium than perfluorinated carboxylic acids. Importantly, based on molecular docking, MRP1, OATP2B1, ASCT1, and P-gp were identified as crucial transporters in the dynamic placental transfer of PFASs between the mother and the fetus. ATSC5p and PubchemFP679 were recognized as critical structural features that affect the metabolism and secretion of PFASs through meconium. With increasing carbon chain length, both the transplacental transfer efficiency and meconium excretion efficiency of PFASs showed a structure-dependent manner. This study reports, for the first time, that meconium, which is a noninvasive and stable biological matrix, can be strong evidence of prenatal PFASs exposure.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Infant, Newborn , Pregnancy , Humans , Female , Placenta , Meconium/metabolism , Molecular Docking Simulation , Alkanesulfonic Acids/metabolism , Carboxylic Acids/metabolism
3.
Natl Sci Rev ; 9(10): nwac089, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36415315

ABSTRACT

Harnessing the fascinating properties of correlated oxides requires precise control of their carrier density. Compared to other methods, oxygen doping provides an effective and more direct way to tune the electronic properties of correlated oxides. Although several approaches, such as thermal annealing and oxygen migration, have been introduced to change the oxygen content, a continuous and reversible solution that can be integrated with modern electronic technology is much in demand. Here, we report a novel ionic field-effect transistor using solid Gd-doped CeO2 as the gate dielectric, which shows a remarkable carrier-density-tuning ability via electric-field-controlled oxygen concentration at room temperature. In Bi2Sr2CaCu2O8+δ (Bi-2212) thin flakes, we achieve a reversible superconductor-insulator transition by driving oxygen ions in and out of the samples with electric fields, and map out the phase diagram all the way from the insulating regime to the over-doped superconducting regime by continuously changing the oxygen doping level. Scaling analysis indicates that the reversible superconductor-insulator transition for the Bi-2212 thin flakes follows the theoretical description of a two-dimensional quantum phase transition. Our work provides a route for realizing electric-field control of phase transition in correlated oxides. Moreover, the configuration of this type of transistor makes heterostructure/interface engineering possible, thus having the potential to serve as the next-generation all-solid-state field-effect transistor.

4.
J Hazard Mater ; 436: 129240, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35739759

ABSTRACT

Perfluorohexane sulfonic acid (PFHxS) and PFHxS-related compounds are listed in Annex A of the Stockholm Convention without specific exemptions. Substances that potentially degrade to PFHxS are considered as their related compounds. Unfortunately, the degradation behavior of PFHxS precursors, an important basis for the corresponding chemical regulation, remains unclear. Herein, based on the hypothesis that bond dissociation enthalpy (BDE) is the determining factor for the degradation of PFHxS precursors, the BDE of PFHxS-related precursors to produceC6F13SO2-groups was calculated. In addition, quantitative structure-activity relationship models based on partial least squares, partial least squares discrimination analysis, and support vector machine algorithms were developed to predict the BDE of 48 PFHxS precursors and distinguish the precursors with different degradation potential. Subsequent photodegradation experiments demonstrated that the order of degradation rates was consistent with that predicted by theoretical models. Importantly, perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid, and not PFHxS, were detected as the degradation products of potential PFHxS precursors. Sulfonamides, phenyl unit, and other radicals in the non-nucleus part of PFHxS precursors were identified as the critical molecular segments that affect their degradation potential. Ultimately, by comparing BDE values, it was theoretically speculated that PFHxS related compounds exhibit a greater potential to generate PFHxA than PFHxS. Results in this study indicated for the first time that not all the compounds containing C6F13SO2- groups were guaranteed to degrade into PFHxS under natural conditions.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Alkanesulfonic Acids/analysis , Fluorocarbons/analysis , Sulfonic Acids
5.
Math Biosci Eng ; 19(4): 3928-3952, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35341281

ABSTRACT

To increase the node coverage of wireless sensor networks (WSN) more effectively, in this paper, we propose a hybrid-strategy-improved butterfly optimization algorithm (H-BOA). First, we introduce Kent chaotic map to initialize the population to ensure a more uniform search space. Second, a new inertial weight modified from the Sigmoid function is introduced to balance the global and local search capacities. Third, we comprehensively use elite-fusion and elite-oriented local mutation strategies to raise the population diversity. Then, we introduce a perturbation based on the standard normal distribution to reduce the possibility of the algorithm falling into premature. Finally, the simulated annealing process is introduced to evaluate the solution's quality and improve the algorithm's ability, which is helpful to jump out of the local optimal value. Through numerous experiments of the international benchmark functions, the results show the performance of H-BOA has been significantly raised. We apply it to the WSN nodes coverage problem. The results show that H-BOA improves the WSN maximum coverage and it is far more than other optimization algorithms.

6.
Environ Sci Technol ; 56(10): 6014-6026, 2022 05 17.
Article in English | MEDLINE | ID: mdl-34142548

ABSTRACT

Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances (PFASs) has aroused public concerns as it can pose multiple health threats to pregnant women and cause adverse birth outcomes for fetuses. In previous studies, the prenatal exposure levels and transplacental transfer efficiencies (TTE) of PFASs have been reported and discussed. Specifically, the binding affinities between PFASs and some transporters were determined, demonstrating that the TTE values of PFASs are highly dependent on their binding behaviors. To summarize primary findings of previous studies and propose potential guidance for future research, this article provides a systematic overview on levels and characteristics of prenatal exposure to PFASs worldwide, summarizes relationships between TTE values and structures of PFASs, and discusses possible transplacental transfer mechanisms, especially for the combination between PFASs and transporters. Given the critical roles of transporters in the transplacental transfer of PFASs, we conducted molecular docking to further clarify the binding behaviors between PFASs and the selected transporters. We proposed that the machine learning can be a superior method to predict and reveal behaviors and mechanisms of the transplacental transfer of PFASs. In total, this is the first review providing a comprehensive overview on the prenatal exposure levels and transplacental transfer mechanisms of PFASs.


Subject(s)
Fluorocarbons , Prenatal Exposure Delayed Effects , Female , Fetus , Fluorocarbons/toxicity , Humans , Membrane Transport Proteins , Molecular Docking Simulation , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced
7.
J Environ Sci (China) ; 112: 71-81, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34955224

ABSTRACT

Soil is a major sink for per- and perfluoroalkyl substances (PFAS), wherein PFAS may be transferred through the food chain to predators at upper trophic levels, which poses a threat to human health. Herein, the concentrations and distributions of legacy and novel PFAS in topsoil samples from different functional areas in Tianjin were comprehensively investigated. Seventeen PFAS congeners were identified, with concentrations ranging from 0.21 ng/g to 5.35 ng/g, with a mean concentration of 1.25 ng/g. The main PFAS in the topsoil was perfluorooctanoic acid (PFOA). 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA; C8) were the major sources (43.4%), followed by food packaging as well as coating materials (25.5%). In addition, Spearman correlation analysis and the structural equation model showed that population density significantly impacted the PFAS distribution in the topsoil of Tianjin.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Alkanesulfonic Acids/analysis , China , Fluorocarbons/analysis , Humans , Soil
8.
J Am Chem Soc ; 143(40): 16383-16387, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34570487

ABSTRACT

Complanadine A and lycodine are representative members of the Lycopodium alkaloids with a characteristic pyridine-containing tetracyclic skeleton. Complanadine A has demonstrated promising neurotrophic activity and potential for persistent pain management. Herein we report a pyrrole strategy enabled by one-carbon insertion and polarity inversion for concise total syntheses of complanadine A and lycodine. The use of a pyrrole as the pyridine precursor allowed the rapid construction of their tetracyclic skeleton via a one-pot Staudinger reduction, amine-ketone condensation, and Mannich-type cyclization. The pyrrole group was then converted to the desired pyridine by the Ciamician-Dennstedt rearrangement via a one-carbon insertion process, which also simultaneously introduced a chloride at C3 for the next C-H arylation. Other key steps include a direct anti-Markovnikov hydroazidation, a Mukaiyama-Michael addition, and a Paal-Knorr pyrrole synthesis. Lycodine and complanadine A were prepared in 8 and 11 steps, respectively, from a readily available known compound.


Subject(s)
Heterocyclic Compounds, 4 or More Rings
9.
Molecules ; 26(12)2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34207747

ABSTRACT

A substituted donor-acceptor cyclobutenecarboxamide is synthesized with modest enantiocontrol through a chiral copper(I) complex catalyzed [3 + 1]-cycloaddition reaction of α-acyl diphenylsulfur ylides with 3-siloxy-2-diazo-3-butenamides. With a methyl substituent on the 4-position of the 3-butenamide, the cis-vicinal-3,4-disubstituted cyclobutenecarboxamide is formed with >20:1 diastereocontrol. Donor-acceptor 3-methyl-2-siloxycyclopropenecarboxamide is rapidly formed from the reactant enoldiazoamide and undergoes catalytic ring opening to give only the Z-γ-substituted metallo-enolcarbene. Elimination from 3-siloxy-2-diazo-3-pentenamide to form the conjugated 3-siloxy-2,4-pentadienamide is competitive but minimized at low temperature.

10.
Environ Int ; 156: 106735, 2021 11.
Article in English | MEDLINE | ID: mdl-34197972

ABSTRACT

In this study, the occurrence, distribution, sources, and risk of 29 legacy and emerging per- and polyfluoroalkyl substances (PFAS) in four kinds of environmental matrices in the Bohai Sea were investigated. The ∑PFAS concentrations were in the range of 0.40 ~ 61.4 ng/g dry weight (dw) in inflow river sediments, 0.48 ~ 61.4 ng/g dw in soil near river inflow, 0.37 ~ 4.18 ng/g dw in sea sediments, and 13.3 ~ 718 ng/L in seawater. PFAS with eight carbons accounted for > 62.2% by mass, in all samples. Perfluorooctanoic acid (PFOA) was the dominant PFAS both by mass and occurrence. Seawater from Laizhou Bay (south of the Bohai Sea) and sediments of Liaodong Bay (northeast of the Bohai Sea) had the highest levels of ∑PFAS. The sediment-water partition coefficient and organic carbon content normalized partition coefficient (log Kd and log Koc) were calculated using measured PFAS concentrations to determine their distribution in seawater and sea sediments. The values of log Kd and log Koc values increased with the increasing CF2 units for perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs). Six primary sources were identified in this region, including aqueous film-forming foams (AFFF), metal plating, food packages, fluorine chemical industry, fluoropolymer manufacture, and domestic pollution. The risk quotient (RQ) values of PFAS were all < 1, indicating that organisms of the Bohai Sea were at low risk of PFAS exposure.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Environmental Monitoring , Fluorocarbons/analysis , Rivers , Seawater , Water Pollutants, Chemical/analysis
11.
Adv Mater ; 33(31): e2008586, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34173269

ABSTRACT

The discovery of magnetism in 2D materials offers new opportunities for exploring novel quantum states and developing spintronic devices. In this work, using field-effect transistors with solid ion conductors as the gate dielectric (SIC-FETs), we have observed a significant enhancement of ferromagnetism associated with magnetic easy-axis switching in few-layered Cr2 Ge2 Te6 . The easy axis of the magnetization, inferred from the anisotropic magnetoresistance, can be uniformly tuned from the out-of-plane direction to an in-plane direction by electric field in the few-layered Cr2 Ge2 Te6 . Additionally, the Curie temperature, obtained from both the Hall resistance and magnetoresistance measurements, increases from 65 to 180 K in the few-layered sample by electric gating. Moreover, the surface of the sample is fully exposed in the SIC-FET device configuration, making further heterostructure-engineering possible. This work offers an excellent platform for realizing electrically controlled quantum phenomena in a single device.

12.
Environ Pollut ; 273: 116460, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33485002

ABSTRACT

Both legacy and emerging per- and polyfluoroalkyl substances (PFAS) have been found to be threats to human health. In particular, fetuses are sensitive to xenobiotics and the placenta functions as a significant barrier for environmental pollutants. The placental transfer of PFAS is closely related to their interactions with proteins. In this study, 54 human placental samples were collected to investigate the occurrence of legacy and emerging PFAS in human placenta, including perfluorinated carboxylates (PFCAs), perfluorinated sulfonates (PFSAs), chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs), and fluorotelomer sulfonates (FTSAs). Among the legacy PFAS, perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) were detected in all samples, with PFOS and PFOA being the two predominant (mean: 0.457 and 0.242 ng/g wet weight, respectively). Among the emerging PFAS, 6:2 Cl-PFESA was detected in all samples with the mean value of 0.104 ng/g wet weight, while the detect frequency (DF) of 8:2 Cl-PFESAs was only 24%. The concentration and DF of the four FTSA congeners were low in the placentas. Molecular docking calculation results showed that the binding affinities of PFAS to the human serum albumin (HSA) were increased with chain length in each category except for the PFCAs, of which the perfluoroundecanoic acid (PFUnDA) was the turning point of binding affinity to HSA. For PFSAs, their binding affinities to organic anion transporter 4 (OAT4) were increased with the chain length except for the sodium perfluoro-1-heptanesulfonate (PFHpS) and sodium perfluoro-1-nonanesulfonate (PFNS). The calculation results demonstrated that the placental transfer of PFAS is closely related to chain length. The findings in the study can help better understand the occurrence of the PFAS in the human placenta and the placental transfer mechanisms of PFAS in human beings.

13.
Nanomaterials (Basel) ; 10(9)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927663

ABSTRACT

Response Surface Methodology (RSM) was used to assess the optimal conditions for a Water/Oil/Water (W/O/W) emulsion for encapsulated nisin (EN). Nano-encapsulated nisin had high encapsulation efficiencies (EE) (86.66 ± 1.59%), small particle size (320 ± 20 nm), and low polydispersity index (0.27). Biodegradable polyvinyl alcohol (PVA) and polyacrylate sodium (PAAS) were blended with EN and prepared by electrospinning. Scanning electron microscopy (SEM) revealed PVA/PAAS/EN nanofibers with good morphology, and that their EN activity and mechanical properties were enhanced. When the ultrasonication time was 15 min and 15% EN was added, the nanofibers had optimal mechanical, light transmittance, and barrier properties. Besides, the release behavior of nisin from the nanofibers fit the Korsemeyer-Peppas (KP) model, a maximum nisin release rate of 85.28 ± 2.38% was achieved over 16 days. At 4 °C, the growth of Escherichia coli and Staphylococcus aureus was inhibited for 16 days in nanofibers under different ultrasonic times. The application of the fiber in food packaging can effectively inhibit the activity of food microorganisms and prolong the shelf life of strawberries, displaying a great potential application for food preservation.

14.
Int J Biol Macromol ; 145: 1031-1038, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31697964

ABSTRACT

The physical and antimicrobial properties of sodium alginate or sodium carboxymethylcellulose films containing cell-free supernatant of Lactococcus lactis ATCC 11454 were evaluated in this study. The antimicrobial activity of the films against Staphylococcus aureus ATCC 6538, and Escherichia coli ATCC 25922 was evaluated. Cell-free supernatants were obtained by centrifugation and filtration of Lactococcus lactis cultures in MRS broth; the filtrates were freeze-dried, and rehydrated (4, 8, or 12 mg/mL) to produce collagen film. The thickness, tensile strength, color, moisture content, solubility, and water vapor permeability of the films were measured to examine the effects of cell-free supernatants on film matrices. Noticeable antimicrobial activity was observed against Staphylococcus aureus, and Escherichia coli upon the addition of 12 mg/mL cell-free supernatants. Our results indicate that the incorporation of cell-free supernatant changed the physical properties of the edible films. Gradual and significant (p < 0.05) increase in color difference and solubility were observed with the addition of increasing concentrations of cell-free supernatant. Antimicrobial films were brown in color and with variable moisture contents. Sodium alginate films were better than sodium carboxymethylcellulose films for most of the evaluated parameters. In summary, collagen films containing cell-free supernatants are interesting alternative natural antimicrobial films for functional food packaging.


Subject(s)
Anti-Bacterial Agents/pharmacology , Collagen/chemistry , Edible Films , Lactococcus lactis/metabolism , Physical Phenomena , Polysaccharides/chemistry , Polysaccharides/pharmacology , Alginates , Carboxymethylcellulose Sodium , Color , Escherichia coli/drug effects , Food Microbiology , Food Packaging/methods , Permeability , Solubility , Staphylococcus aureus/drug effects , Tensile Strength , Water/chemistry
15.
Artif Cells Nanomed Biotechnol ; 47(1): 3786-3792, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31549850

ABSTRACT

Phospholipase Cγ2 (PLCG2) has been implicated in the regulation of cell proliferation, transformation, and tumor growth. In this study, we investigate the mechanism of PLCG2 action using a short interference RNA (siRNA) method. The effects of PLCG2 on rat liver BRL-3A cells treated siRNA were studied by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT assay), bromodeoxyuridine (BrdU) labelling assay, flow cytometry method (FCM), quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. The results showed when PLCG2 was reduced, cell vitality and proliferation rate were significantly decreased (p < .05 vs. control). FCM analysis showed that the number of cell division phase (G2 + M) was declined (p < .05 vs. control). RT-PCR and western blot revealed that the expression of signalling related genes NF-κB, FOS, JUN and ELK, target genes BCL2, CCNB1 and CCND1 were remarkably down-regulated in cells treated with PLCG2 siRNAs. Based on these results, we conclude PLCG2 plays an important role in rat liver cell proliferation via ERK and NF-κB pathway by regulating the expression of BCl2, MYC and CCND1.


Subject(s)
Cyclin D1/metabolism , Hepatocytes/cytology , MAP Kinase Signaling System , NF-kappa B/metabolism , Phospholipase C gamma/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Cell Proliferation , Phospholipase C gamma/deficiency , Phospholipase C gamma/genetics , RNA, Small Interfering/genetics , Rats
16.
Int J Biol Macromol ; 141: 378-386, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31491515

ABSTRACT

In this study, we developed edible films designed to control the growth of Staphylococcus aureus in tryptone soya agar. We analyzed three edible film-forming substrates: sodium alginate, sodium carboxymethylcellulose, and collagen. In addition, we evaluated Lactococcus lactis, which produces bacteriocin and lactic acid. Lactococcus lactis-containing edible films were constructed via tape-casting method. Optical, mechanical, and antimicrobial properties of the edible films were measured to examine the effects of Lactococcus lactis on film matrices. Further, we determined the survival of Lactococcus lactis after the film-drying process and viability of Lactococcus lactis stored for 24 days at 4 °C. Our results indicate that incorporation of Lactococcus lactis changed the physical properties of edible films. Films containing Lactococcus lactis showed reduced gloss and transparency. There are insignificant modifications were observed in terms of tensile strength and elongation at break. At 4 °C, used to represent a low-temperature environment, the growth of Staphylococcus aureus was inhibited for 7 days in edible films populated with Lactococcus lactis. The viability of Lactococcus lactis was higher in sodium alginate/sodium carboxymethylcellulose films, and was highest in films composed of sodium alginate and methylcellulose. In summary, our study provides a new method for functional food packaging.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antibiosis , Edible Films , Lactococcus lactis/physiology , Chemical Phenomena , Food Packaging , Spectroscopy, Fourier Transform Infrared , Tensile Strength
17.
Ultrason Sonochem ; 59: 104731, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31442767

ABSTRACT

Nanofibrous composite membranes consisting of polyvinyl alcohol (PVA), graphene oxide (GO), and zinc oxide nanoparticles (ZnO NPs) were prepared by and ultrasonic processing, and electrospinning. The performance of the membranes containing different GO-to-ZnO NP mass ratios was comprehensively investigated in terms of density, mechanical properties, water vapor permeability, optical property, biodegradability and antimicrobial properties. The results showed that an appropriate sonication time (30 min) improved the membrane performance; the composite nanofibrous membrane with a GO-to-ZnO NP mass ratio of 3:7 and 30 min sonication exhibited the best performance with a water vapor permeability of (0.62 ±â€¯0.01) × 10-2 g·h-1 m-2 pa-1, and strain and stress values of 307.84 ±â€¯2.96% and 12.82 ±â€¯0.56 MPa, respectively. Particularly, the UV barrier property of the composite nanofibrous membrane was enhanced. Furthermore, the membrane exhibited strong antibacterial activity against foodborne pathogenic and spoilage bacteria. Thu, it can thus be used as an active food packaging material to ensure the safety of food products and to extend their shelf-life.

18.
Molecules ; 23(10)2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30326631

ABSTRACT

Edible films have gradually become a research focus for food packaging materials due to a variety of benefits, including environmental friendliness, good barrier properties, and good carrying capacity. In this experimental study, we used sodium alginate as a film-forming substrate, sodium carboxymethylcellulose as a modifier, and glycerol as a plasticizer, then Lactococcus lactis was added to film solutions to form bacteriostatic films via the tape casting method. With the addition of Lactococcus lactis, the films did not significantly change thickness, while the transparency decreased and a significant increase in red and yellow hues was observed. Meanwhile, the dispersion of bacterial cells in film solutions destroyed intermolecular interactions in the solutions during film formation and increased the volume of voids in the Lactococcus lactis-containing films, thereby slightly decreasing the tensile strength of the films, but significantly increasing water vapor permeability. Moreover, the films with added Lactococcus lactis showed significant bacteriostatic activity against Staphylococcus aureus at 4 °C. In a seven-day bacteriostatic test, the films with Lactococcus lactis added at a level of 1.5 g/100 g resulted in a decrease in the viable cell count of Staphylococcus aureus by at least four logarithmic units. This study of Lactococcus lactis-containing films has provided a new method and strategy for antibacterial preservation of foods.


Subject(s)
Alginates/chemistry , Anti-Bacterial Agents/pharmacology , Carboxymethylcellulose Sodium/chemistry , Lactococcus lactis/physiology , Anti-Bacterial Agents/chemistry , Food Packaging , Glycerol/chemistry , Microbial Viability/drug effects , Staphylococcus aureus/drug effects , Tensile Strength
19.
Front Physiol ; 9: 1070, 2018.
Article in English | MEDLINE | ID: mdl-30123141

ABSTRACT

The inward rectifying potassium channel, Kir2.1, is selected as cargo at the trans-Golgi network (TGN) for export to the cell surface through a unique signal-dependent interaction with the AP1 clathrin-adaptor, but it is unknown how the channel is targeted at earlier stages in the secretory pathway for traffic to the TGN. Here we explore a mechanism. A systematic screen of Golgi tethers identified Golgin-97 as a Kir2.1 binding partner. In vitro protein-interaction studies revealed the interaction is direct, occurring between the GRIP domain of Golgin-97 and the cytoplasmic domain of Kir2.1. Imaging and interaction studies in COS-7 cells suggest that Golgi-97 binds to the channel en route through the Golgi. RNA interference-mediated knockdown of Golgin-97 prevented exit of Kir2.1 from the Golgi. These observations identify Golgin-97 as a Kir2.1 binding partner that is required for targeting the channel to the TGN. Based on our studies in COS-7 cells, we propose Golgi-97 facilitates formation of AP1-dependent export carriers for Kir2.1 by coupling anterograde delivery of Kir2.1 with retrograde recycling of AP-1 containing endosomes to the TGN.

20.
Int J Biol Macromol ; 106: 516-522, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28801096

ABSTRACT

Collagens were extracted from the scales and skin of Ctenopharyngodon idella (C. idella) as raw materials using an acid-enzyme hybrid method. The structural properties of the extracted collagens were compared using ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and differential scanning calorimetry. Additionally, the in vitro self-aggregation behaviors of the two types of collagens (fish skin- and scale-derived collagens) were compared using turbidimetric assays, aggregation assays, and scanning electron microscopy (SEM). The results showed that both types of extracted collagen were typical type I collagen with two α chains and intact triple-helical structures. The denaturation temperatures of the collagens from fish scales and skin were 34.99°C and 39.75°C, respectively. Both types of collagens were capable of self-aggregation in neutral salt solution at 30°C, with aggregation degrees of 28% and 27.33% for the scale and skin collagens, respectively. SEM analysis revealed that both types of collagens could self-aggregate into interwoven fibers, and the fish scale-derived collagen had a more pronounced reticular fiber structure with a striped periodic D-band pattern of collagen fibrils, whereas the collagen fibers from the self-aggregation of fish skin-derived collagen had a certain degree of disruption without any D-band pattern.


Subject(s)
Animal Scales/chemistry , Collagen Type I/chemistry , Fish Proteins/chemistry , Protein Aggregates , Skin/chemistry , Animals , Carps/metabolism , Collagen Type I/isolation & purification , Collagen Type I/ultrastructure , Fish Proteins/isolation & purification , Fish Proteins/ultrastructure , Liquid-Liquid Extraction/methods , Organ Specificity , Protein Conformation, alpha-Helical , Protein Denaturation , Solubility , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...