Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 72(22): 12607-12617, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38785045

ABSTRACT

To explore the roles of loops around active pocket in the reuteran type 4,6-α-glucanotransferase (StGtfB) from S. thermophilus, they were individually or simultaneously replaced with those of an isomalto/maltopolysaccharides type 4,6-α-glucanotransferase from L. reuteri. StGtfB with the replaced loops A1, A2 (A1A2) and A1, A2, B (A1A2B), respectively, showed 1.41- and 0.83-fold activities of StGtfB. Two mutants reduced crystallinity and increased starch disorder at 2, 4, and 8 U/g more than StGtfB and increased DP ≤ 5 short branches of starch by 38.01% at 2 U/g, much more than StGtfB by 4.24%. A1A2B modified starches had the lowest retrogradation over 14 days. A1A2 modified starches had the highest percentage of slowly digestible fractions, ranging from 40.32% to 43.34%. StGtfB and its mutants bind substrates by hydrogen bonding and van der Waals forces at their nonidentical amino acid residues, suggesting that loop replacement leads to a different conformation and changes activity and product structure.


Subject(s)
Bacterial Proteins , Glycogen Debranching Enzyme System , Starch , Streptococcus thermophilus , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Streptococcus thermophilus/enzymology , Streptococcus thermophilus/genetics , Streptococcus thermophilus/chemistry , Streptococcus thermophilus/metabolism , Substrate Specificity , Starch/metabolism , Starch/chemistry , Glycogen Debranching Enzyme System/chemistry , Glycogen Debranching Enzyme System/metabolism , Glycogen Debranching Enzyme System/genetics , Catalytic Domain , Kinetics , Biocatalysis
2.
J Nutr Biochem ; 125: 109560, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38163625

ABSTRACT

Food allergy is an abnormal immune reaction triggered by food protein antigens. Relevant studies have suggested that probiotic supplementation was with the potential to alleviate food allergy. This study aimed to explore the effects of Lactobacillus plantarum A56 on the alleviation of ovalbumin (OVA)-induced food allergy via immunomodulatory function, antioxidation, and modification of intestinal microbiota. Balb/c mice were sensitized with OVA (20 µg/mouse) by intraperitoneal injection for 3 weeks and accompanied by oral administration of L. plantarum A56 (109 CFU/mL), subsequently with orally challenged twice by OVA at 50 mg/mL for 1 week. The results showed that oral supplementation of L. plantarum A56 could effectively relieve allergic symptoms of mice, and decreased OVA-specific IgE and IgG1 concentrations. It also declined interleukin (IL)-4 level, raised interferon-γ (IFN-γ) in serum, and splenocyte supernatant, and the qPCR results were consistent with above results. Moreover, L. plantarum A56 treatment also fortified superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels, and reduced malondialdehyde (MDA) level in serum. The increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and forkhead box O1 (Foxo1) expression indicated that L. plantarum A56 exerted antioxidation through Nrf2-Foxo1 pathway. In addition, L. plantarum A56 treatment elevated Bacteroidetes richness, ASV/OTU number, species diversity, etc. Notably, Spearman correlation analysis indicated that Bacteroidetes displayed obviously negative correlation with IgE and IgG1, but Actinobacteria and Acidobacteria exhibited significantly positive correlation with IgG1 and IgE. Collectively, these results suggested that L. plantarum A56 could alleviate OVA-induced food allergy by regulating Th1/Th2 imbalance, antioxidation, and modulating intestinal microbiota.


Subject(s)
Food Hypersensitivity , Gastrointestinal Microbiome , Lactobacillus plantarum , Mice , Animals , Lactobacillus plantarum/physiology , NF-E2-Related Factor 2 , Food Hypersensitivity/therapy , Immunoglobulin E , Immunoglobulin G , Mice, Inbred BALB C
3.
IEEE Trans Cybern ; 54(1): 519-532, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37030830

ABSTRACT

Information granularity and information granules are fundamental concepts that permeate the entire area of granular computing. With this regard, the principle of justifiable granularity was proposed by Pedrycz, and subsequently a general two-phase framework of designing information granules based on Fuzzy C-means clustering was successfully developed. This design process leads to information granules that are likely to intersect each other in substantially overlapping clusters, which inevitably leads to some ambiguity and misperception as well as loss of semantic clarity of information granules. This limitation is largely due to imprecise description of boundary-overlapping data in the existing algorithms. To address this issue, the rough k -means clustering is introduced in an innovative way into Pedrycz's two-phase information granulation framework, together with the proposed local boundary fuzzy metric. To further strengthen the characteristics of support and inhibition of boundary-overlapping data, an augmented parametric version of the principle is refined. On this basis, a local boundary fuzzified rough k -means-based information granulation algorithm is developed. In this manner, the generated granules are unique and representative whilst ensuring clearer boundaries. The validity and performance of this algorithm are demonstrated through the results of comparative experiments.

4.
IEEE/ACM Trans Comput Biol Bioinform ; 20(6): 3725-3736, 2023.
Article in English | MEDLINE | ID: mdl-37698974

ABSTRACT

In feature selection research, simultaneous multi-class feature selection technologies are popular because they simultaneously select informative features for all classes. Recursive feature elimination (RFE) methods are state-of-the-art binary feature selection algorithms. However, extending existing RFE algorithms to multi-class tasks may increase the computational cost and lead to performance degradation. With this motivation, we introduce a unified multi-class feature selection (UFS) framework for randomization-based neural networks to address these challenges. First, we propose a new multi-class feature ranking criterion using the output weights of neural networks. The heuristic underlying this criterion is that "the importance of a feature should be related to the magnitude of the output weights of a neural network". Subsequently, the UFS framework utilizes the original features to construct a training model based on a randomization-based neural network, ranks these features by the criterion of the norm of the output weights, and recursively removes a feature with the lowest ranking score. Extensive experiments on 15 real-world datasets suggest that our proposed framework outperforms state-of-the-art algorithms. The code of UFS is available at https://github.com/SVMrelated/UFS.git.


Subject(s)
Algorithms , Microarray Analysis , Neural Networks, Computer , Random Allocation
5.
Plant Methods ; 19(1): 101, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37770966

ABSTRACT

BACKGROUND: Sugarcane (Saccharum spp.) is the core crop for sugar and bioethanol production over the world. A major problem in sugarcane production is stalk lodging due to weak mechanical strength. Rind penetrometer resistance (RPR) and breaking force are two kinds of regular parameters for mechanical strength characterization. However, due to the lack of efficient methods for determining RPR and breaking force in sugarcane, genetic approaches for improving these traits are generally limited. This study was designed to use near-infrared spectroscopy (NIRS) calibration assay to accurately assess mechanical strength on a high-throughput basis for the first time. RESULTS: Based on well-established laboratory measurements of sugarcane stalk internodes collected in the years 2019 and 2020, considerable variations in RPR and breaking force were observed in the stalk internodes. Following a standard NIRS calibration process, two online models were obtained with a high coefficient of determination (R2) and the ratio of prediction to deviation (RPD) values during calibration, internal cross-validation, and external validation. Remarkably, the equation for RPR exhibited R2 and RPD values as high as 0.997 and 17.70, as well as showing relatively low root mean square error values at 0.44 N mm-2 during global modeling, demonstrating excellent predictive performance. CONCLUSIONS: This study delivered a successful attempt for rapid and precise prediction of rind penetrometer resistance and breaking force in sugarcane stalk by NIRS assay. These established models can be used to improve phenotyping jobs for sugarcane germplasm on a large scale.

6.
Front Plant Sci ; 14: 1224268, 2023.
Article in English | MEDLINE | ID: mdl-37546250

ABSTRACT

Sugarcane is a major industrial crop around the world. Lodging due to weak mechanical strength is one of the main problems leading to huge yield losses in sugarcane. However, due to the lack of high efficiency phenotyping methods for stalk mechanical strength characterization, genetic approaches for lodging-resistant improvement are severely restricted. This study attempted to apply near-infrared spectroscopy high-throughput assays for the first time to estimate the crushing strength of sugarcane stalks. A total of 335 sugarcane samples with huge variation in stalk crushing strength were collected for online NIRS modeling. A comprehensive analysis demonstrated that the calibration and validation sets were comparable. By applying a modified partial least squares method, we obtained high-performance equations that had large coefficients of determination (R2 > 0.80) and high ratio performance deviations (RPD > 2.4). Particularly, when the calibration and external validation sets combined for an integrative modeling, we obtained the final equation with a coefficient of determination (R2) and ratio performance deviation (RPD) above 0.9 and 3.0, respectively, demonstrating excellent prediction capacity. Additionally, the obtained model was applied for characterization of stalk crushing strength in large-scale sugarcane germplasm. In a three-year study, the genetic characteristics of stalk crushing strength were found to remain stable, and the optimal sugarcane genotypes were screened out consistently. In conclusion, this study offers a feasible option for a high-throughput analysis of sugarcane mechanical strength, which can be used for the breeding of lodging resistant sugarcane and beyond.

7.
Fitoterapia ; 167: 105514, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37084851

ABSTRACT

Ginseng, an ancient medicinal herb, is used in oriental medicine for the treatment of various diseases. Saponins are the main bioactive components of ginseng, but the multiple glucosyl side chains on its molecules prevent ginsenosides from entering the blood through the intestinal membrane, thus reducing the efficacy. The preparation of rare ginsenosides, which are easy to be absorbed by human body and have higher drug activity, has been widely practiced by removing the sugar group of natural ginsenosides in vitro. Rare ginsenosides Rg3 and Rh2 have been approved as drugs or health supplements to improve immune function. This review summarizes the preparation methods of ginsenoside Rg3 and Rh2 in recent years. Ginsenoside Rg3 and Rh2 were prepared by biotransformation of protopanaxadiol type ginsenoside, with the highest conversion rate of 98.19% and 95.89% in the laboratory, respectively. At present, improving the conversion rate and reducing the production cost are still the bottleneck of industrial scale production of Rg3 and Rh2 through the deglycosylation directly from Rb1, Rb2, Rb3, Rc and Rd in the crude extract of ginseng. In addition, ginsenosides Rg3 and Rh2 play anti-inflammatory, anticancer, cardiovascular protective, immunomodulatory, neuroprotective, anti-diabetic, anti-fatigue, anti-allergic, anti-aging, antioxidant and other pharmacological effects by activating AMPK, JNK, NF-κB, MAPKs, P13K/AKT/mTOR and other signaling pathways. As potential drugs for prevention and treatment of various diseases, ginsenoside Rg3 and Rh2 need to further clarify other underlying mechanisms of action through in vitro and in vivo experiments.


Subject(s)
Ginsenosides , Panax , Plants, Medicinal , Saponins , Humans , Ginsenosides/pharmacology , Molecular Structure , Plants, Medicinal/metabolism , Panax/chemistry
8.
Eur J Nutr ; 62(2): 685-698, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36194269

ABSTRACT

PURPOSE: The incidence and prevalence of food allergy have sharply risen over the past several decades. Oral administration of probiotic stains has been proven as a safe and effective method to control food allergy. In this study, it aims to comprehensively investigate the anti-allergic effect of Lactobacillus plantarum JC7. METHODS: Balb/c mice were randomly divided into three groups and received OVA (20 µg/mouse, intraperitoneal injection), L. plantarum JC7 (2 × 108 CFU/mouse, intragastric administration) + OVA (20 µg/mouse, intraperitoneal injection) or 0.9% saline (intragastric administration) for 3 weeks. Body weight was monitored weekly, and allergic reactions were evaluated after challenge of OVA. Serum levels of OVA-specific immunoglobulins and various cytokines were tested using ELISA, and the cecum microbiota was analysed by 16S rRNA sequencing to explore the relationships between these indicators and OVA-induced food allergy. Western blotting was used to identify the expression levels of phosphorylated IκBα and nuclear factor kappa B p65. RESULTS: OVA-sensitised mice showed mitigation of respiratory manifestations, alleviation of lung inflammation and congestion, and the presence of an intact intestinal villus structure. Furthermore, OVA-specific immunoglobulin E (IgE), OVA-specific-IgG1, and plasma histamine levels were declined in mice treated with L. plantarum JC7 than in OVA-sensitised mice. In addition, interferon-γ (IFN-γ) and interleukin 10 (IL-10) levels were significantly increased, while IL-4 and IL-17A levels were clearly decreased in mice that had undergone oral administration of L. plantarum JC7, compared with OVA-sensitised mice. These findings indicated imbalances of T helper cell type 1 (Th1)/Th2 and regulatory T cells (Treg)/Th17, which were confirmed by quantitative polymerase chain reaction (PCR). Western blotting demonstrated that the expression levels of phosphorylated IκBα and nuclear factor kappa B p65 were significantly increased in OVA-sensitised mice, but these changes were partly reversed after treatment with L. plantarum JC7. Oral administration of L. plantarum JC7 increased the richness, diversity, and evenness of cecum microbiota, characterised by higher Bacteroidetes abundance and lower Firmicutes abundance. Additionally, the intestinal microbial community composition was significantly altered in the OVA-sensitised group, indicating a disordered intestinal microbiota that was restored by the oral administration of L. plantarum JC7. CONCLUSION: Overall, L. plantarum JC7 can prevent food allergy by rectifying Th1/Th2 and Treg/Th17 imbalances, combined with modifications of disordered intestinal microbiota.


Subject(s)
Food Hypersensitivity , Gastrointestinal Microbiome , Lactobacillus plantarum , Mice , Animals , Lactobacillus plantarum/genetics , Lactobacillus plantarum/metabolism , Ovalbumin , NF-KappaB Inhibitor alpha/therapeutic use , NF-kappa B , RNA, Ribosomal, 16S , Food Hypersensitivity/drug therapy , Cytokines/metabolism , Administration, Oral , Mice, Inbred BALB C , Disease Models, Animal
9.
Biotechnol Biofuels ; 14(1): 123, 2021 May 29.
Article in English | MEDLINE | ID: mdl-34051834

ABSTRACT

BACKGROUND: Sugarcane is one of the most crucial energy crops that produces high yields of sugar and lignocellulose. The cellulose crystallinity index (CrI) and lignin are the two kinds of key cell wall features that account for lignocellulose saccharification. Therefore, high-throughput screening of sugarcane germplasm with excellent cell wall features is considered a promising strategy to enhance bagasse digestibility. Recently, there has been research to explore near-infrared spectroscopy (NIRS) assays for the characterization of the corresponding wall features. However, due to the technical barriers of the offline strategy, it is difficult to apply for high-throughput real-time analyses. This study was therefore initiated to develop a high-throughput online NIRS assay to rapidly detect cellulose crystallinity, lignin content, and their related proportions in sugarcane, aiming to provide an efficient and feasible method for sugarcane cell wall feature evaluation. RESULTS: A total of 838 different sugarcane genotypes were collected at different growth stages during 2018 and 2019. A continuous variation distribution of the near-infrared spectrum was observed among these collections. Due to the very large diversity of CrI and lignin contents detected in the collected sugarcane samples, seven high-quality calibration models were developed through online NIRS calibration. All of the generated equations displayed coefficient of determination (R2) values greater than 0.8 and high ratio performance deviation (RPD) values of over 2.0 in calibration, internal cross-validation, and external validation. Remarkably, the equations for CrI and total lignin content exhibited RPD values as high as 2.56 and 2.55, respectively, indicating their excellent prediction capacity. An offline NIRS assay was also performed. Comparable calibration was observed between the offline and online NIRS analyses, suggesting that both strategies would be applicable to estimate cell wall characteristics. Nevertheless, as online NIRS assays offer tremendous advantages for large-scale real-time screening applications, it could be implied that they are a better option for high-throughput cell wall feature prediction. CONCLUSIONS: This study, as an initial attempt, explored an online NIRS assay for the high-throughput assessment of key cell wall features in terms of CrI, lignin content, and their proportion in sugarcane. Consistent and precise calibration results were obtained with NIRS modeling, insinuating this strategy as a reliable approach for the large-scale screening of promising sugarcane germplasm for cell wall structure improvement and beyond.

10.
Food Funct ; 12(12): 5417-5428, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33988206

ABSTRACT

Due to the prevalence and severity of cow milk (CM) allergy (CMA), an ideal substitute is urgently needed to develop hypoallergenic infant formula for infants who experience anaphylaxis to typical whey-based CM formula. Goat milk (GM) and horse milk (HM) are considered appropriate substitutes; however, whether GM and HM are less allergenic than CM is unclear. In the present study, the difference in allergenicity among CM, GM, and HM was investigated using the Balb/c mouse model. The number of mice with severe respiratory symptoms was significantly lower in the GM- and HM-sensitised groups than in the CM-sensitised group. Furthermore, histologic examination of intestinal and lung tissues revealed a thinner lamina propria of the small intestine and obvious inflammation and congestion in lungs in the CM-sensitised group than in the GM- and HM-sensitised groups. CM-specific immunoglobulin (Ig) E, serum IgG1, and plasma histamine levels were also higher in CM-sensitised mice than in GM- or HM-sensitised mice. In addition, higher interleukin (IL) 4 and IL-17A levels and lower interferon-γ (IFN-γ) and IL-10 levels were observed in CM-sensitised mice compared with GM- and HM-sensitised mice, according to qPCR, indicating Th1/Th2 and Treg/Th17 imbalances. The CM-sensitised group had a higher proportion of IL-4- and IL-17A-producing CD3+ T cells but a lower proportion of IFN-γ- and IL-10-producing CD3+ T cells compared with the GM- and HM-sensitised groups, confirming the Th1/Th2 and Treg/Th17 imbalances. In conclusion, GM and HM were less allergenic than CM in mice as a result of a shift in the Th1/Th2 and Treg/Th17 imbalances; however, HM was less allergenic than GM and can be used as an alternative milk to develop infant formulas for children with CMA.


Subject(s)
Allergens , Milk Hypersensitivity/immunology , Milk/immunology , Administration, Oral , Animals , Cattle , Cytokines , Disease Models, Animal , Female , Goats , Histamine/blood , Horses , Immunoglobulin E , Immunoglobulin G , Infant Formula , Inflammation , Interleukin-10 , Interleukin-17 , Interleukin-4 , Mice , Mice, Inbred BALB C , Milk/classification , Th1 Cells , Th17 Cells , Th2 Cells , Transcription Factors , Whey , Whey Proteins/immunology
11.
Nanoscale ; 13(1): 253-260, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33331373

ABSTRACT

The development of artificial skin, such as electronic skin, is critical to emerging artificial intelligence systems. Electronic skins reported to date are mechanically flexible, and can detect various stimuli, but lack the ability to regulate themselves and learn information from the outside world. The integration of bio-inspired multifunction in a single electronic platform is critical to the development of e-skin systems. Here, we demonstrate a self-powered, light-stimulated, smart e-skin based on a photosensitive perovskite material. The electronic skin implements the functions of both tactile sensing and photoelectric neural computing. The strategy for developing such a material system and architecture of the electronic skin meets the requirement of multifunctional smart human-machine interfaces and has promising potential for application in future artificial intelligence systems.


Subject(s)
Artificial Intelligence , Mechanoreceptors , Calcium Compounds , Electronics , Humans , Oxides , Titanium , Touch
12.
J Food Sci Technol ; 57(12): 4649-4659, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33087976

ABSTRACT

Enzymatic extraction of arabinoxylans (AXs) is an attractive and environmentally friendly extraction option, in which technical considerations (yield and purity) have been coupled with environmental concerns. Amano HC 90 and Cellulase were combined to evaluate their interactive effects on AX extraction from destarched, deproteinised bran (DSDPB). A response surface methodology was used to obtain the optimal extraction conditions. The experimental data fit well with the predicted values and the model adequately represented the actual relationship among the measured parameters. The extraction yield and AX content in the extract under optimal conditions (double-enzyme dose of 920 U/g, pH of 3.0, extraction temperature of 35.0 °C; extraction time of 6 h; and DSDPB to liquid ratio of 1:30) were 40.73 ± 0.09% and 75.88 ± 0.11%, respectively. The double-enzymatic extraction method of AX from fresh corn fibre was more efficient than the chemical method.

13.
ACS Appl Mater Interfaces ; 12(35): 39649-39656, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32698573

ABSTRACT

Anticounterfeiting techniques based on physical unclonable functions exhibit great potential in security protection of extensive commodities from daily necessities to high-end products. Herein, we propose a facile strategy to fabricate an unclonable super micro fingerprint (SMFP) array by introducing in situ grown perovskite crystals for multilevel anticounterfeiting labels. The unclonable features are formed on the basis of the differential transportation of a microscale perovskite precursor droplet during the inkjet printing process, coupled with random crystallization and Ostwald ripening of perovskite crystals originating from their ion crystal property. Furthermore, the unclonable patterns can be readily tailored by tuning in situ crystallization conditions of the perovskite. Three-dimensional height information on the perovskite patterns are introduced into a security label and further transformed into structural color, significantly enhancing the capacity of anticounterfeiting labels. The SMFPs are characterized with tunable multilevel anticounterfeiting properties, including macroscale patterns, microscale unclonable pattern, fluorescent two-dimensional pattens, and colorful three-dimensional information.

14.
Int J Biol Macromol ; 102: 651-657, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28433770

ABSTRACT

Tigernut starch is an underutilized food resource. In this study, pullulanase (PUL) hydrolysis was used to change its physiochemical properties for different food applications. The content of low digestible fractions, resistant starch and slow digestible starch, in PUL modified tigernut starch significantly increased from 2.03% to 25.08% (P<0.05) using 100U/g starch of PUL in the debranching reaction. The paste or dispersion of PUL modified tigernut starch had a significantly decreased viscoelasticity (P<0.05), but the paste still exhibited a typical property of pseudoplasticity. Molecular weight, amylopectin A B2 and B3 chain of PUL modified starch were lower, while amylose content, amylopectin B1 chain were higher than those of natural tigernut starch. The low digestible and viscous tigernut starch is highly valued as a component in some functional foods.


Subject(s)
Bacillus/enzymology , Cyperus/chemistry , Digestion , Elasticity , Glycoside Hydrolases/metabolism , Starch/chemistry , Starch/metabolism , Amylose/analysis , Molecular Weight , Viscosity
15.
Cell Biochem Biophys ; 70(3): 1841-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25331670

ABSTRACT

The umami taste receptor is a heterodimer composed of two members of the T1R taste receptor family: T1R1 and T1R3. The homology models of the ligand binding domains of the human umami receptor have been constructed based on crystallographic structures of the taste receptor of the central nervous system. Furthermore, the molecular simulations of the ligand binding domain show that the likely conformation was that T1R1 protein exists in the closed conformation, and T1R3 in the open conformation in the heterodimer. The molecular docking study of T1R1 and T1R3 in complex with four peptides, including Lys-Gly-Asp-Glu-Ser-Leu-Leu-Ala, Ser-Glu-Glu, G1u-Ser, and Asp-Glu-Ser, displayed that the amino acid residue of SER146 and Glu277 in T1R3 may play great roles in the synergism of umami taste. This docking result further validated the robustness of the model. In the paper, binding of umami peptide and the T1R1/T1R3 receptor was first described and the interaction is the base of umami activity theory.


Subject(s)
Receptors, G-Protein-Coupled/metabolism , Amino Acid Sequence , Binding Sites , Humans , Molecular Docking Simulation , Molecular Sequence Data , Peptides/chemistry , Peptides/metabolism , Protein Structure, Quaternary , Receptors, G-Protein-Coupled/agonists
16.
Langmuir ; 29(27): 8482-91, 2013 Jul 09.
Article in English | MEDLINE | ID: mdl-23718719

ABSTRACT

It has been expected that superhydrophobic (SHP) surfaces could have potential anti-icing applications due to their excellent water-repellence properties. However, a thorough understanding on the anti-icing performance of such surfaces has never been reported; even systematic characterizations on icing behavior of various surfaces are still rare because of the lack of powerful instrumentations. In this study, we employed the electrochemical anodic oxidation and chemical etching methods to simplify the fabrication procedures for SHP surfaces on the aluminum alloy substrates, aiming at the anti-icing properties of SHP surfaces of various engineering materials. We found that the one-step chemical etching with FeCl3 and HCl as the etchants was the most effective for ideal SHP surfaces with a large contact angle (CA, 159.1°) and a small contact angle hysteresis (CAH, 4.0°). To systematically investigate the anti-icing behavior of the prepared SHP surfaces, we designed a robust apparatus with a real-time control system based on the two stage refrigerating method. This system can monitor the humidity, pressure, and temperature during the icing process on the surfaces. We demonstrated that the SHP surfaces exhibited excellent anti-icing properties, i.e., from the room temperature of 16.0 °C, the icing time on SHP surfaces can be postponed from 406s to 676s compared to the normal aluminum alloy surface if the surfaces were put horizontally, and the icing temperature can be decreased from -2.2 °C to -6.1 °C. If such surfaces were tilted, the sprayed water droplets on the normal surfaces iced up at the temperature of -3.9 °C, but bounced off the SHP surface even as the temperature reached as low as -8.0 °C. The present study therefore suggests a general, simple, and low-cost methodology for the promising anti-icing applications in various engineering materials and different fields (e.g., power lines and aircrafts).

17.
J Phys Chem B ; 114(32): 10384-90, 2010 Aug 19.
Article in English | MEDLINE | ID: mdl-20701373

ABSTRACT

Wormlike nanowires have been successfully prepared via the ionic self-assembly (ISA) route from the cationic (ferrocenylmethyl)trimethylammonium iodide (FcMI) and the anionic sodium bis(2-ethyl-1-hexyl)sulfosuccinate (AOT). The formed FcM-AOT complexes have been proved to possess a composition of equal molar ratio and show good redox activity also due to the introduction of organic metal ferrocene. These complexes exhibit an ordered hexagonal columnar structure with the lattice spacing D of 2.49 nm. More interestingly, the wormlike nanowires interweave themselves together to form a net-like structure, and some of them are large enough to exhibit a high-order crystal structure. In addition, such an ISA organized aggregate can be changed into vesicles by including the Fc blocks into beta-cyclodextrins to form another supramolecular complex. The supramolecular structure and morphology of the vesicles were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS), respectively. Both the complex fabrication and transition mechanisms are discussed and found to be controlled by the inclusion equilibrium and the cooperative binding of noncovalent interactions, including the electrostatic interactions, pi-pi stacking, and amphiphilic hydrophobic association.

18.
J Colloid Interface Sci ; 351(1): 63-8, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20719326

ABSTRACT

The ionic self-assembled organic microrods are obtained through complexing two functional molecules, sodium deoxycholate and 1-adamantanamine hydro-chloride. Meanwhile, the amphiphilicity of the complex could be changed by a supramolecular approach with cyclodextrin (CD) inclusion to obtain a thermo-sensitive system. The microrod morphology and structure are characterized by optical microscopy, scanning electron microscopy, single crystal analysis and X-ray powder diffraction. The mechanism of thermo-sensitivity induced by beta-CD inclusion complex is discussed in view of dynamic balance between the host beta-CDs and guest molecules. Experimental results indicate the feasibility of single crystal culture in ionic self-assembly and potential application of CDs in thermo-sensitive supramolecular systems.


Subject(s)
Temperature , beta-Cyclodextrins/chemistry , Macromolecular Substances/chemistry , Models, Molecular , Molecular Structure , Particle Size , Surface Properties
19.
Langmuir ; 26(11): 7802-7, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20131772

ABSTRACT

The aggregation behaviors of oleyl polyoxyethylene (10) ether, Brij 97, in room temperature ionic liquids, ethylammonium nitrate (EAN), pyrrolidinium nitrate ([Pyrr][NO(3)]), ethylammonium butyrate (EAB), 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF(6)]), and 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]), have been investigated. Only in the Brij 97/EAN binary system is the hexagonal liquid crystalline phase formed, and its ordering is found to decrease with increasing temperature. The lattice spacing values measured from the small-angle X-ray scattering (SAXS) shrink with reduction of ionic liquid content at room temperature. The general rules for aggregate formation in these ionic liquids are discussed and compared with that in water. A degraded ability to produce the ordered self-assembly of Brij 97 from H(2)O to EAN to [Bmim][PF(6)], [Bmim][BF(4)], [Pyrr][NO(3)], and EAB is found and analyzed based on the molecular packing and Gordon parameters and also hydrogen-bonding or solvophobic interactions. Steady-shear rheological measurements combined with the frequency sweep data indicate the highly viscoelastic nature of this liquid crystalline phase.

20.
J Phys Chem B ; 113(4): 983-8, 2009 Jan 29.
Article in English | MEDLINE | ID: mdl-19125577

ABSTRACT

The phase behavior of a catanionic system composed by a cationic surfactive ionic liquid (IL), 1-hexadecyl-3-methylimidazolium chloride ([C(16)mim]Cl), an anionic sodium dodecyl sulfate (SDS), and water has been investigated. A novel gel phase with quite high water content can be fabricated showing similar rheological properties to vesicles usually formed in traditional catanionic systems. The lamellar structure could also be constructed in SDS-rich region. Both the hydrophobic interaction of alkyl chains and interactions between oppositely charged head groups play important roles for the gel formation. Such a facile method to form gels directly from the catanionic system at relative low surfactant concentrations is novel, which should be related to the specific molecular structure of imidazolium ILs. The obtained results are expected to be helpful for better understanding of catanionic systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...