Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 960: 176116, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38059443

ABSTRACT

Cardiac fibrosis (CF) in response to persistent exogenous stimuli or myocardial injury results in cardiovascular diseases (CVDs). Protein tyrosine phosphatase 1B (PTP1B) can promote collagen deposition through regulating AMPK/TGF-ß/Smads signaling pathway, and PTP1B knockout improves cardiac dysfunction against overload-induced heart failure. Oleanolic acid (OA) has been proven to be an inhibitor of PTP1B, and its anti-cardiac remodeling effects have been validated in different mouse models. To improve the bioactivity of OA and to clarify whether OA derivatives with stronger inhibition of PTP1B activity have greater prevention of cardiac remodeling than OA, four new OA derivatives were synthesized and among them, we found that compound B had better effects than OA in inhibiting cardiac fibrosis both in vivo in the isoproterenol (ISO)-induced mouse cardiac fibrosis and in vitro in the TGF-ß/ISO-induced 3T3 cells. Combining with the results of molecular docking, surface plasmon resonance and PTP1B activity assay, we reported that OA and compound B directly bound to PTP1B and inhibited its activity, and that compound B showed comparable binding capability but stronger inhibitory effect on PTP1B activity than OA. Moreover, compound B presented much greater effects on AMPK activation and TGF-ß/Smads inhibition than OA. Taken together, OA derivative compound B more significantly alleviated cardiac fibrosis than OA through much greater inhibition of PTP1B activity and thus much stronger regulation of AMPK/TGF-ß/Smads signaling pathway.


Subject(s)
Oleanolic Acid , Transforming Growth Factor beta , Animals , Mice , Transforming Growth Factor beta/metabolism , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , AMP-Activated Protein Kinases/metabolism , Signal Transduction , Molecular Docking Simulation , Fibrosis , Transforming Growth Factor beta1/metabolism
2.
Phytomedicine ; 68: 153142, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32045840

ABSTRACT

BACKGROUND: The dried heartwood of Caesalpinia sappan L. is traditionally prescribed in the formula of traditional Chinese medicine (TCM) for the treatment of acute myeloid leukemia (AML), while nothing is yet known of the active fractions and the underlying mechanisms. PURPOSE: This study aims to investigate the effect of the ethyl acetate extract of the dried heartwood of Caesalpinia sappan L. (C-A-E) on induction of apoptosis and promotion of differentiation in vitro and anti-AML activity in vivo. STUDY DESIGN/METHODS: The aqueous extract was sequentially separated with solvents of increasing polarity and the active fraction was determined through the inhibition potency. The inhibition of the active fraction on cell viability, proliferation and colony formation was performed in different AML cells. Induction of apoptosis and the promotion of differentiation were further determined. Then, the level of the reactive oxygen species (ROS) and its potential role were assessed. Finally, anti-AML activity was evaluated in NOD/SCID mice. RESULTS: C-A-E exhibited the highest inhibition on the cell viability of HL-60 cells. Meanwhile, C-A-E significantly suppressed the proliferation and the colony formation ability of HL-60 and Kasumi-1 cells. Moreover, C-A-E significantly induced the apoptosis, which was partially reversed by Z-VAD-FMK. C-A-E also reduced the level of mitochondrial membrane potential, promoted the release of cytochrome C, decreased the Bcl-2/Bax ratio, and promoted the cleavage of caspase-9 and -3. In addition, Mdivi-1 (mitochondrial fission blocker) remarkably reduced the apoptosis caused by C-A-E. Meanwhile, C-A-E also induced the expression of Mff and Fis1 and increased the location of Drp1 in mitochondria. Furthermore, C-A-E obviously promoted the differentiation of AML cells characterized by the typic morphological changes, the increased NBT positive cells, as well as the increased CD11b and CD14 levels. Notably, C-A-E significantly enhanced the intracellular ROS level. Moreimportantly, C-A-E-mediated apoptosis and differentiation of HL-60 cells was significantly mitigated by NAC. Additionally, C-A-E also exhibited an obvious anti-AML effect in NOD/SCID mice with the injection of HL-60 cells. CONCLUSIONS: C-A-E exhibited an inhibitory effect on AML cells by inducing mitochondrial apoptosis and promoting differentiation, both of which were highly correlated to the activation of ROS.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Caesalpinia/chemistry , Leukemia, Myeloid, Acute/drug therapy , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism , Acetates/chemistry , Animals , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , CD11b Antigen/metabolism , Cell Differentiation/drug effects , HL-60 Cells , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Lipopolysaccharide Receptors/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice, Inbred NOD , Mice, SCID , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...