Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Chempluschem ; : e202400236, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895820

ABSTRACT

As both a critical chemical feedstock and an environmental pollutant, the production and utilization of ammonia (NH3) are accompanied by the progress of social civilization. In recent years, research on metal/covalent organic framework materials as NH3 adsorbents has attracted increasing attention due to their high porosity, versatile architecture and tunable functionality. This review was organized to highlight the recent advancement of MOF/COF materials for NH3 sorption, which successively presented the key properties of solid adsorbents and summarized the strategies along with their mechanisms for enhancing NH3 adsorption. In addition, perspectives and outlook regarding the future development of MOF/COF-based NH3 adsorbents were outlined to meet the requirements of practical applications in different environment.

2.
ACS Appl Mater Interfaces ; 16(24): 31464-31472, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38840337

ABSTRACT

One-step He purification from natural gas represents a crucial solution for addressing the global He shortages. The prevailing method to produce high-grade He involves cryogenic distillation and ultralow temperature adsorption processes, which is highly cost- and energy-intensive. Separating and purifying He at ambient temperature is a great challenge because the fundamental limitation lies in the boiling point, polarizability, and kinetic diameters of CH4/N2/He gases. In this study, we seek to implement a relay adsorption strategy using Ni(ina)2 and MIL-100(Cr) metal-organic frameworks (MOFs) to produce high-purity He from ternary mixtures (CH4, N2, and He) at ambient temperature. The CH4/He selectivity in Ni(ina)2 and N2/He selectivity in MIL-100(Cr) both reach record 15.39 and 128.49, respectively, making the relay adsorption for helium purification highly efficient. The breakthrough experiments show that the two MOFs can sequentially adsorb CH4 and N2 in ternary mixtures, producing He with a purity of up to 99.99% in one step. The remarkable separation performance and stability of these MOFs underscore the industrial potential in purifying He at ambient temperature.

3.
ACS Appl Mater Interfaces ; 16(25): 32271-32281, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38868898

ABSTRACT

Visible-light-driven conversion of carbon dioxide to valuable compounds and fuels is an important but challenging task due to the inherent stability of the CO2 molecules. Herein, we report a series of cobalt-based polymerized porphyrinic network (PPN) photocatalysts for CO2 reduction with high activity. The introduction of organic groups results in the addition of more conjugated electrons to the networks, thereby altering the molecular orbital levels within the networks. This integration of functional groups effectively adjusts the levels of the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO). The PPN(Co)-NO2 exhibits outstanding performance, with a CO evolution rate of 12 268 µmol/g/h and 85.8% selectivity, surpassing most similar photocatalyst systems. The performance of PPN(Co)-NO2 is also excellent in terms of apparent quantum yield (AQY) for CO production (5.7% at 420 nm). Density functional theory (DFT) calculations, time-resolved photoluminescence (TRPL), and electrochemical tests reveal that the introduction of methyl and nitro groups leads to a narrower energy gap, facilitating a faster charge transfer. The coupling reaction in this study enables the formation of stable C-C bonds, enhancing the structural regulation, active site diversity, and stability of the catalysts for photocatalytic CO2 reduction. This work offers a facile strategy to develop reliable catalysts for efficient CO2 conversion.

4.
Plants (Basel) ; 13(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611451

ABSTRACT

Investigating intraspecific trait variability is crucial for understanding plant adaptation to various environments, yet research on lithophytic mosses in extreme environments remains scarce. This study focuses on Indusiella thianschanica Broth. Hal., a unique lithophytic moss species in the extreme environments of the Tibetan Plateau, aiming to uncover its adaptation and response mechanisms to environmental changes. Specimens were collected from 26 sites across elevations ranging from 3642 m to 5528 m, and the relationships between 23 morphological traits and 15 environmental factors were analyzed. Results indicated that coefficients of variation (CV) ranged from 5.91% to 36.11%, with gametophyte height (GH) and basal cell transverse wall thickness (STW) showing the highest and lowest variations, respectively. Temperature, elevation, and potential evapo-transpiration (PET) emerged as primary environmental drivers. Leaf traits, especially those of the leaf sheath, exhibited a more pronounced response to the environment. The traits exhibited apparent covariation in response to environmental challenges and indicated flexible adaptive strategies. This study revealed the adaptation and response patterns of different morphological traits of I. thianschanica to environmental changes on the Tibetan Plateau, emphasizing the significant effect of temperature on trait variation. Our findings deepen the understanding of the ecology and adaptive strategies of lithophytic mosses.

5.
Small ; : e2401314, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38644698

ABSTRACT

Bismuth-based materials have been recognized as the appealing anodes for potassium-ion batteries (PIBs) due to their high theoretical capacity. However, the kinetics sluggishness and capacity decline induced by the structure distortion predominately retard their further development. Here, a heterostructure of polyaniline intercalated Bi2O2CO3/MXene (BOC-PA/MXene) hybrids is reported via simple self-assembly strategy. The ingenious design of heterointerface-rich architecture motivates significantly the interior self-built-in electric field (IEF) and high-density electron flow, thus accelerating the charge transfer and boosting ion diffusion. As a result, the hybrids realize a high reversible specific capacity, satisfying rate capability as well as long-term cycling stability. The in/ex situ characterizations further elucidate the stepwise intercalation-conversion-alloying reaction mechanism of BOC-PA/MXene. More encouragingly, the full cell investigation further highlights its competitive merits for practical application in further PIBs. The present work not only opens the way to the design of other electrodes with an appropriate working mechanism but also offers inspiration for built-in electric-field engineering toward high-performance energy storage devices.

6.
Math Biosci Eng ; 20(12): 21211-21228, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38124594

ABSTRACT

In this paper, we study the problem of optimal control of backward stochastic differential equations with three delays (discrete delay, moving-average delay and noisy memory). We establish the sufficient optimality condition for the stochastic system. We introduce two kinds of time-advanced stochastic differential equations as the adjoint equations, which involve the partial derivatives of the function $ f $ and its Malliavin derivatives. We also show that these two kinds of adjoint equations are equivalent. Finally, as applications, we discuss a linear-quadratic backward stochastic system and give an explicit optimal control. In particular, the stochastic differential equations with time delay are simulated by means of discretization techniques, and the effect of time delay on the optimal control result is explained.

7.
Nat Commun ; 14(1): 7261, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37945558

ABSTRACT

The development of fast-response sensors for detecting NH3 at room temperature remains a formidable challenge. Here, to address this challenge, two highly robust Hoffmann-type metal-organic frameworks are rationally applied as the NH3 sensing materials which possess ultra-high static adsorption capacity for NH3, only lower than the current benchmark material. The adsorption mechanism is in-depth unveiled by dynamic adsorption and simulation studies. The assembled interdigital electrode device exhibits low detection limit (25 ppb) and short response time (5 s) at room temperature, which set a record among all electrical signal sensors. Moreover, the sensor exhibits excellent selectivity towards NH3 in the presence of 13 other potential interfering gases. Prominently, the sensor can stably output signals for more than two months at room temperature and can be recovered by simply purging nitrogen at room temperature without heating. This study opens up a way for reasonably designing gas sensing materials for toxic gases.

8.
Angew Chem Int Ed Engl ; 62(42): e202310235, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37658513

ABSTRACT

Xe is an ideal anesthetic gas, but it has not been widely used in practice due to its high cost and low output. Closed-circuit Xe recovery and recycling is an economically viable method to ensure adequate supply in medical use. Herein, we design an innovative way to recover Xe by using a stable fluorinated metal-organic framework (MOF) NbOFFIVE-1-Ni to eliminate CO2 from moist exhaled anesthetic gases. Unlike other Xe recovery MOFs with low Xe/CO2 selectivity (less than 10), NbOFFIVE-1-Ni could achieve absolute molecular sieve separation of CO2 /Xe with excellent CO2 selectivity (825). Mixed-gas breakthrough experiments assert the potential of NbOFFIVE-1-Ni as a molecular sieve adsorbent for the effective and energy-efficient removal of carbon dioxide with 99.16 % Xe recovery. Absolute CO2 /Xe separation in NbOFFIVE-1-Ni makes closed-circuit Xe recovery and recycling can be easily realized, demonstrating the potential of NbOFFIVE-1-Ni for important anesthetic gas regeneration under ambient conditions.

9.
Chemistry ; 29(66): e202302462, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37642408

ABSTRACT

Efficient and inherently safe NH3 storage and separation are of significant importance for the chemical industry. Herein, we proposed zwitterionic COF as a porous host to disperse LiCl for highly efficient NH3 storage and separation with record adsorption capacity. The equivalently cationic and anionic groups in the channels of zwitterionic COF could act as two separated sites to facilitate the dispersion of LiCl, hence the optimal composite exhibits a high capture capacity of 44.98 mmol/g at 25 °C and 1 bar, far exceeding other existing porous materials. Notably, the adsorption capacity is completely reversible and the efficient separation of NH3 from NH3 /CO2 /N2 mixture is achieved through breakthrough experiments. DFT calculation combined with XPS and 7 Li NMR experimental results give insight into the interaction between zwitterionic COF and LiCl. This work extends possibilities for the development of efficient adsorbents for NH3 storage and separation.

10.
Nano Lett ; 23(21): 9788-9795, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37642519

ABSTRACT

Bismuth and bismuth-based compounds have been extensively studied as anodes as prospective candidates for rechargeable magnesium batteries (rMBs). However, the unsatisfactory magnesium-storage capability caused by the typical alloying reaction mechanism severely restricts the practical option for anodes in rMBs. Herein, polyaniline intercalated Bi2O2CO3 nanosheets are prepared by an effective interlayer engineering strategy to fine-tune the layer structure of Bi2O2CO3, achieving enhanced magnesium-storage capacity, rate performance, as well as long cycle life. Excitedly, a stepwise insertion-conversion-alloying reaction is aroused to stabilize the performance, which is elucidated by in/ex situ investigations. Moreover, first-principles calculations confirm that the coupling of Bi2O2CO3 and polyaniline not only increases the conductivity induced by the strong density of states and the interior self-built-in electric field but also significantly reduces the energy barrier of Mg shuttles. Our findings shed light on exploring new electrode materials with an appropriate working mechanism toward high-performance rechargeable batteries.

11.
ACS Appl Mater Interfaces ; 15(25): 30312-30319, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37306480

ABSTRACT

Eliminating trace sulfur dioxide (SO2) using nanoporous adsorbents is industrially preferred yet of great challenge due to the competitive adsorption of CO2. Herein, we reported a highly stable 3D viologen porous organic framework (Viologen-POF) microsphere via one pot polymerization reaction of 4,4'-bipyridine and tetrakis(4-(bromomethyl)phenyl)methane. Compared to the previously reported irregular POF particles, viologen-POF microsphere shows better mass transfer uniformity. Owing to the intrinsic separated positive and negative electric charges center in viologen-POF microspheres, it exhibits excellent SO2 selective capture performance, which can be collaboratively confirmed by static single-component gas adsorption, time-dependent adsorption rate, and multicomponent dynamic breakthrough experiments. Viologen-POF exhibits high SO2 absorption capacity (1.45 mmol g-1) at ultralow pressure of 0.002 bar and high SO2/CO2 selectivity of 467 at 298 K and 100 kPa (SO2/CO2, 10/90, v/v). The theoretical calculations based on density functional theory (DFT) and DMol3 modules in Material Studio (MS) were also performed to elucidate the adsorption mechanism of viologen-POF toward SO2 at the molecular level. This study represents a new type of viologen porous framework microsphere for trace SO2 capture, which will pave the way on the applications of ionic POF for toxic gas adsorption and separation.

12.
ACS Appl Mater Interfaces ; 15(24): 29468-29477, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37300495

ABSTRACT

The polypyrene polymer with an extended π-conjugated skeleton is attractive for perfluorinated electron specialty gas (F-gas) capture as the high electronegativity of fluorine atoms makes F-gases strongly electronegative gases. Herein, a polypyrene porous organic framework (termed as Ppy-POF) with an extended π-conjugated structure and excellent acid resistance was constructed. Systematic studies have shown that the abundant π-conjugated structures and gradient electric field distribution in Ppy-POF can endow it exceptional adsorption selectivity for high polarizable F-gases and xenon (Xe), which has been collaboratively confirmed by single-component gas adsorption experiments, time-dependent adsorption rate tests, dynamic breakthrough experiments, etc. Electrostatic potential distribution and charge density difference based on Grand Canonical Monte Carlo simulations and density functional theory calculations demonstrate that the selective adsorption of F-gases and Xe in Ppy-POF is attributed to the strong charge-transfer effect and polarization effect between Ppy-POF and gases. These results manifest that the POF with an extended π-conjugated structure and gradient electric field distribution has great potential in efficiently capturing electron specialty gases.

13.
Macromol Rapid Commun ; 44(11): e2200718, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36271740

ABSTRACT

High-performance membranes are critical to membrane separation technology. In recent years, 2D covalent organic frameworks (2D COFs) have attracted extensive attention in the field of membrane separation due to their high porosity, ordered channels, and fine-tuned pore sizes, which are considered as excellent candidate to solve the trade-off between membrane selectivity and permeability. Herein, two kinds of ionic 2D COFs with different charge properties (termed as iCOFs) are integrated into polyacrylonitrile (PAN) substrates to form two composite membranes (PAN@iCOFs) with excellent selective perfluoroalkyl substances (PFASs) separation performance with high solvent permeability and good mechanical properties. The as-prepared PAN@iCOFs composite membranes can selectively reject more than 99.0% of positively and negatively charged PFASs in wastewater while maintaining good stability and recyclability.


Subject(s)
Fluorocarbons , Metal-Organic Frameworks , Ions , Membranes , Permeability
14.
Biology (Basel) ; 11(12)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36552204

ABSTRACT

We examined the interaction of a membrane-associated protein, MARCKS-like Protein-1 (MLP-1), and an ion channel, Epithelial Sodium Channel (ENaC), with the anionic lipid, phosphatidylinositol 4, 5-bisphosphate (PIP2). We found that PIP2 strongly activates ENaC in excised, inside-out patches with a half-activating concentration of 21 ± 1.17 µM. We have identified 2 PIP2 binding sites in the N-terminus of ENaC ß and γ with a high concentration of basic residues. Normal channel activity requires MLP-1's strongly positively charged effector domain to electrostatically sequester most of the membrane PIP2 and increase the local concentration of PIP2. Our previous data showed that ENaC covalently binds MLP-1 so PIP2 bound to MLP-1 would be near PIP2 binding sites on the cytosolic N terminal regions of ENaC. We have modified the charge structure of the PIP2 -binding domains of MLP-1 and ENaC and showed that the changes affect membrane localization and ENaC activity in a way consistent with electrostatic theory.

15.
ACS Appl Mater Interfaces ; 14(30): 35126-35137, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35866627

ABSTRACT

The development of robust and efficient porous adsorbents is essential for capturing xenon (Xe) and perfluorinated electron specialty gases (F-gases) in semiconductor exhaust gases, as toxic and corrosive gases coexist in high-temperature plasma degradation off-gases. Herein, two three-dimensional (3D) fluorinated porous aromatic frameworks (PAFs) with abundant fluorine (labeled PAF-4F and PAF-8F) were synthesized. The two PAFs exhibit high IAST selectivity in capturing Xe and F-gases from semiconductor off-gases, as well as excellent physicochemical stability and reusability, which have been collaboratively verified by single-component gas adsorption and regeneration tests, etc. Density functional theory (DFT) simulation revealed that the entry of strongly electronegative fluorine atoms into PAFs causes localized charge separation on the polymer pore surface, resulting in the preferential adsorption of high-polarizability Xe and F-gases via induced electric field gradients. Systematic studies have sufficiently manifested the great potential of fluorine-functionalized porous materials to effectively capture Xe and F-gases, which provides practical insights into the fabrication of highly stable porous adsorbents for harsh operating conditions.

16.
Langmuir ; 38(28): 8667-8676, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35776010

ABSTRACT

Here we report two HF acid resistant porous aromatic frameworks as adsorbents for high value-added electronic special gases (e.g., SF6, NF3, CF4, Xe, Kr) separation. The New-PAF-1 and N-SO3H exhibit exceptional adsorption selectivity for Xe and F-gases from semiconductor exhaust gas along with high physicochemical stability and excellent reusability, which have been collaboratively confirmed by single-component gas adsorption experiments, time-dependent adsorption rate tests, dynamic breakthrough experiments and regeneration tests. The theoretical calculations based on DFT and Mulliken atomic charge analyses elucidated the adsorption mechanism of New-PAF-1 and N-SO3H toward F-gases, Xe, Kr, and N2 at molecular level, including adsorption site, binding energy and electrostatic potentials distribution. The systematic investigation sufficiently manifests that PAFs can act as highly stable porous adsorbents in harsh operating conditions.

17.
J Neurotrauma ; 39(9-10): 724-734, 2022 05.
Article in English | MEDLINE | ID: mdl-35216518

ABSTRACT

Polyuria is found in patients with spinal cord injury (SCI). However, the underlying cellular and molecular mechanism is unknown. Here, we show that mice had elevated urine for 7 days after T10 contusion. Using multi-photon confocal microscopy, we performed intra-vital imaging experiments to evaluate water reabsorption in kidney tubules by examining fluorescent intensity in the lumen of the distal tubule from live mice. The data show that SCI significantly reduced the concentrating function of kidney tubules. The reduced water reabsorption appears to be mediated by atrial natriuretic peptide (ANP) because SCI increased the expression levels of both ANP and natriuretic peptide receptor A (NPR-A) in the kidney cortex. Our patch-clamp single-channel recordings from split-open distal tubules show that SCI decreased the activity of the epithelial sodium channel (ENaC). Western blot combined with confocal microscopy data show that the levels of 70 kD γ-ENaC, which is an active isoform because of proteolytic cleavage, were significantly reduced in distal tubule principal cells. An NPR-A inhibitor (A71915) given intravenously eliminated the effects of SCI on ENaC and polyuria. These data together with previous studies suggest that SCI causes polyuria, probably by reducing ENaC activity through elevating ANP and NPR-A. Further investigation of the signal transduction pathways may provide useful information for discovering an efficient drug to treat SCI-induced polyuria.


Subject(s)
Atrial Natriuretic Factor , Spinal Cord Injuries , Animals , Epithelial Sodium Channels/metabolism , Female , Humans , Male , Mice , Polyuria/etiology , Signal Transduction/physiology , Spinal Cord Injuries/complications , Water/metabolism
18.
J Chem Phys ; 156(5): 054702, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35135255

ABSTRACT

The nonlinear optical limiting (OL) property of tin phthalocyanine porous organic frameworks (Sn-Pc-POFs) dispersion in the nanosecond regime was studied, which showed excellent dispersibility and stability as well as a low OL threshold. To clarify the nonlinear optical response mechanisms in the material, the energy level structure of Sn-Pc-POFs was simulated using the density functional theory calculation, and the photoinduced carrier dynamics was studied using femtosecond time-resolved transient absorption spectroscopy. The results indicated that the large absorption cross section and long lifetime of the excited state were responsible for the excellent OL property of the material.

19.
ACS Appl Mater Interfaces ; 13(50): 59983-59992, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34889090

ABSTRACT

As a unique branch of Li-S batteries, solid-phase sulfur conversion polymer cathodes have shown superior stability with fast ion-transfer kinetics and high discharge capacities owing to the mere existence of short-chain sulfur species during charging/discharging. However, representative compounds such as sulfurized polyacrylonitrile (SPAN) and polyaniline (SPANI) suffer from low sulfur contents and poor cycling performances under large current densities due to the sulfurization occurring only on polymers' surface. Here, a graphdiyne-like porous organic framework, denoted as GPOF, is synthesized and used as a host for enabling solid-phase sulfur conversion. Plenty of unsaturated bonds in GPOF provide sufficient reaction sites to bind sulfur chains, resulting in a high active sulfur content in the cathode. Moreover, the microporous GPOF possesses suitable cavities to accommodate the volume expansion, leading to favorable long-term cycling stability. As a result, the sulfurized GPOF cathode (SGPOF-320) displays outstanding electrochemical stability with negligible capacity decline after 250 cycles at 0.2 C with an average discharge capacity of 925 mA h g-1. Our work applies a facile procedure to produce sulfur conversion porous polymer cathodes, which could provide a proper way for exploring more suitable cathode materials for high-performance Li-S batteries.

20.
ACS Nano ; 15(12): 19743-19755, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34846130

ABSTRACT

Ionic covalent organic frameworks (COFs) consisting of an anionic or cationic skeleton and corresponding counterions have demonstrated great potential in many application fields such as ion conduction, molecular separation, and catalysis. However, arranging anionic and cationic groups into the same COF to form zwitterionic materials is still unexplored. Herein we design the synthesis of three zwitterionic COFs as attractive porous hosts for SO2/CO2 separation and anhydrous proton conduction. The separated cationic and anionic groups in zwitterionic COFs' channels can act as two different polar sites for SO2 adsorption, allowing zwitterionic COFs to achieve a high SO2 adsorption capacity (216 mL/g, 298 K) and impressive SO2/CO2 selectivity (118, 298 K). Furthermore, after loading with triazole/imidazole, the zwitterionic groups in COFs' channels can induce complete proton carrier deprotonation, producing more freely migrating protons. The free protons migrate along a continuous hydrogen-bonding network in zwitterionic COFs' channels, leading to outstanding anhydrous proton conductivity up to 4.38 × 10-2 S/cm, which is much higher than other N-heterocyclic-doped porous materials under anhydrous conditions. Proton dissociation energy calculations combined with frequency-dependent dielectric analysis give insight into the role of zwitterionic COFs for proton conductivity. Our work provides the possibility to design well-defined zwitterionic frameworks for gas separation and ion conduction.

SELECTION OF CITATIONS
SEARCH DETAIL