Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Br J Radiol ; 96(1152): 20230047, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37751163

ABSTRACT

OBJECTIVE: To develop and evaluate a fully automated method based on deep learning and phantomless internal calibration for bone mineral density (BMD) measurement and opportunistic low BMD (osteopenia and osteoporosis) screening using chest low-dose CT (LDCT) scans. METHODS: A total of 1175 individuals were enrolled in this study, who underwent both chest LDCT and BMD examinations with quantitative computed tomography (QCT), by two different CT scanners (Siemens and GE). Two convolutional neural network (CNN) models were employed for vertebral body segmentation and labeling, respectively. A histogram technique was applied for vertebral BMD calculation using paraspinal muscle and surrounding fat as references. 195 cases (by Siemens scanner) as fitting cohort were used to build the calibration function. 698 cases as validation cohort I (VCI, by Siemens scanner) and 282 cases as validation cohort II (VCII, by GE scanner) were performed to evaluate the performance of the proposed method, with QCT as the standard for analysis. RESULTS: The average BMDs from the proposed method were strongly correlated with QCT (in VCI: r = 0.896, in VCII: r = 0.956, p < 0.001). Bland-Altman analysis showed a small mean difference of 1.1 mg/cm3, and large interindividual differences as seen by wide 95% limits of agreement (-29.9 to +32.0 mg/cm3) in VCI. The proposed method measured BMDs were higher than QCT measured BMDs in VCII (mean difference = 15.3 mg/cm3, p < 0.001). Osteoporosis and low BMD were diagnosed by proposed method with AUCs of 0.876 and 0.903 in VCI, 0.731 and 0.794 in VCII, respectively. The AUCs of the proposed method were increased to over 0.920 in both VCI and VCII after adjusting the cut-off. CONCLUSION: Without manual selection of the region of interest of body tissues, the proposed method based on deep learning and phantomless internal calibration has the potential for preliminary screening of patients with low BMD using chest LDCT scans. However, the agreement between the proposed method and QCT is insufficient to allow them to be used interchangeably in BMD measurement. ADVANCES IN KNOWLEDGE: This study proposed an automated vertebral BMD measurement method based on deep learning and phantomless internal calibration with paraspinal muscle and fat as reference.


Subject(s)
Deep Learning , Osteoporosis , Humans , Bone Density/physiology , Calibration , Tomography, X-Ray Computed/methods , Osteoporosis/diagnostic imaging , Absorptiometry, Photon/methods , Lumbar Vertebrae/diagnostic imaging
2.
Bioengineering (Basel) ; 10(8)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37627842

ABSTRACT

Colorectal cancer (CRC) is a prevalent gastrointestinal tumour with high incidence and mortality rates. Early screening for CRC can improve cure rates and reduce mortality. Recently, deep convolution neural network (CNN)-based pathological image diagnosis has been intensively studied to meet the challenge of time-consuming and labour-intense manual analysis of high-resolution whole slide images (WSIs). Despite the achievements made, deep CNN-based methods still suffer from some limitations, and the fundamental problem is that they cannot capture global features. To address this issue, we propose a hybrid deep learning framework (RGSB-UNet) for automatic tumour segmentation in WSIs. The framework adopts a UNet architecture that consists of the newly-designed residual ghost block with switchable normalization (RGS) and the bottleneck transformer (BoT) for downsampling to extract refined features, and the transposed convolution and 1 × 1 convolution with ReLU for upsampling to restore the feature map resolution to that of the original image. The proposed framework combines the advantages of the spatial-local correlation of CNNs and the long-distance feature dependencies of BoT, ensuring its capacity of extracting more refined features and robustness to varying batch sizes. Additionally, we consider a class-wise dice loss (CDL) function to train the segmentation network. The proposed network achieves state-of-the-art segmentation performance under small batch sizes. Experimental results on DigestPath2019 and GlaS datasets demonstrate that our proposed model produces superior evaluation scores and state-of-the-art segmentation results.

3.
Nanomaterials (Basel) ; 12(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36234524

ABSTRACT

For the preparation of diamond heat sinks with ultra-high thermal conductivity by Chemical Vapor Deposition (CVD) technology, the influence of diamond growth direction and electric field on thermal conductivity is worth exploring. In this work, the phonon and thermal transport properties of diamond in three crystal orientation groups (<100>, <110>, and <111>) were investigated using first-principles calculations by electric field. The results show that the response of the diamond in the three-crystal orientation groups presented an obvious anisotropy under positive and negative electric fields. The electric field can break the symmetry of the diamond lattice, causing the electron density around the C atoms to be segregated with the direction of the electric field. Then the phonon spectrum and the thermodynamic properties of diamond were changed. At the same time, due to the coupling relationship between electrons and phonons, the electric field can affect the phonon group velocity, phonon mean free path, phonon−phonon interaction strength and phonon lifetime of the diamond. In the crystal orientation [111], when the electric field strength is ±0.004 a.u., the thermal conductivity is 2654 and 1283 W·m−1K−1, respectively. The main reason for the change in the thermal conductivity of the diamond lattice caused by the electric field is that the electric field has an acceleration effect on the extranuclear electrons of the C atoms in the diamond. Due to the coupling relationship between the electrons and the phonons, the thermodynamic and phonon properties of the diamond change.

4.
ACS Nano ; 16(6): 9410-9419, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35657964

ABSTRACT

Structural colors of plasmonic metasurfaces have been promised to a strong technological impact thanks to their high brightness, durability, and dichroic properties. However, fabricating metasurfaces whose spatial distribution must be customized at each implementation and over large areas is still a challenge. Since the demonstration of printed image multiplexing on quasi-random plasmonic metasurfaces, laser processing appears as a promising technology to reach the right level of accuracy and versatility. The main limit comes from the absence of physical models to predict the optical properties that can emerge from the laser processing of metasurfaces in which random metallic nanostructures are characterized by their statistical properties. Here, we demonstrate that deep neural networks trained from experimental data can predict the spectra and colors of laser-induced plasmonic metasurfaces in various observation modes. With thousands of experimental data, produced in a rapid and efficient way, the training accuracy is better than the perceptual just noticeable change. This accuracy enables the use of the predicted continuous color charts to find solutions for printing multiplexed images. Our deep learning approach is validated by an experimental demonstration of laser-induced two-image multiplexing. This approach greatly improves the performance of the laser-processing technology for both printing color images and finding optimized parameters for multiplexing. The article also provides a simple mining algorithm for implementing multiplexing with multiple observation modes and colors from any printing technology. This study can improve the optimization of laser processes for high-end applications in security, entertainment, or data storage.

5.
Comput Biol Med ; 145: 105500, 2022 06.
Article in English | MEDLINE | ID: mdl-35421793

ABSTRACT

With the widely applied computer-aided diagnosis techniques in cervical cancer screening, cell segmentation has become a necessary step to determine the progression of cervical cancer. Traditional manual methods alleviate the dilemma caused by the shortage of medical resources to a certain extent. Unfortunately, with their low segmentation accuracy for abnormal cells, the complex process cannot realize an automatic diagnosis. In addition, various methods on deep learning can automatically extract image features with high accuracy and small error, making artificial intelligence increasingly popular in computer-aided diagnosis. However, they are not suitable for clinical practice because those complicated models would result in more redundant parameters from networks. To address the above problems, a lightweight feature attention network (LFANet), extracting differentially abundant feature information of objects with various resolutions, is proposed in this study. The model can accurately segment both the nucleus and cytoplasm regions in cervical images. Specifically, a lightweight feature extraction module is designed as an encoder to extract abundant features of input images, combining with depth-wise separable convolution, residual connection and attention mechanism. Besides, the feature layer attention module is added to precisely recover pixel location, which employs the global high-level information as a guide for the low-level features, capturing dependencies of channel features. Finally, our LFANet model is evaluated on all four independent datasets. The experimental results demonstrate that compared with other advanced methods, our proposed network achieves state-of-the-art performance with a low computational complexity.


Subject(s)
Image Processing, Computer-Assisted , Uterine Cervical Neoplasms , Artificial Intelligence , Early Detection of Cancer , Female , Humans , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Uterine Cervical Neoplasms/diagnostic imaging
6.
Adv Mater ; 34(2): e2104054, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34648203

ABSTRACT

Passive plasmonic metasurfaces enable image multiplexing by displaying different images when altering the conditions of observation. Under white light, three-image multiplexing with polarization-selective switching has been recently demonstrated using femtosecond-laser-processed random plasmonic metasurfaces. Here, the implementation of image multiplexing is extended, thanks to a color-search algorithm, to various observation modes compatible with naked-eye observation under incoherent white light and to four-image multiplexing under polarized light. The laser-processed random plasmonic metasurfaces enabling image multiplexing exhibit self-organized patterns that can diffract light or induce dichroism through hybridization between the localized surface plasmon resonance of metallic nanoparticles and a lattice resonance. Improved spatial resolution makes the image quality compatible with commercial use in secured documents as well as the processing time and cost thanks to the use of a nanosecond laser. This high-speed and flexible laser process, based on energy-efficient nanoparticle reshaping and self-organization, produces centimeter-scale customized tamper-proof images at low cost, which can serve as overt security features.

7.
Bioengineering (Basel) ; 10(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36671619

ABSTRACT

Cervical cancer is one of the most common cancers that threaten women's lives, and its early screening is of great significance for the prevention and treatment of cervical diseases. Pathologically, the accurate segmentation of cervical cells plays a crucial role in the diagnosis of cervical cancer. However, the frequent presence of adherent or overlapping cervical cells in Pap smear images makes separating them individually a difficult task. Currently, there are few studies on the segmentation of adherent cervical cells, and the existing methods commonly suffer from low segmentation accuracy and complex design processes. To address the above problems, we propose a novel star-convex polygon-based convolutional neural network with an encoder-decoder structure, called SPCNet. The model accomplishes the segmentation of adherent cells relying on three steps: automatic feature extraction, star-convex polygon detection, and non-maximal suppression (NMS). Concretely, a new residual-based attentional embedding (RAE) block is suggested for image feature extraction. It fuses the deep features from the attention-based convolutional layers with the shallow features from the original image through the residual connection, enhancing the network's ability to extract the abundant image features. And then, a polygon-based adaptive NMS (PA-NMS) algorithm is adopted to screen the generated polygon proposals and further achieve the accurate detection of adherent cells, thus allowing the network to completely segment the cell instances in Pap smear images. Finally, the effectiveness of our method is evaluated on three independent datasets. Extensive experimental results demonstrate that the method obtains superior segmentation performance compared to other well-established algorithms.

8.
Med Phys ; 45(12): 5494-5508, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30339290

ABSTRACT

PURPOSE: This study developed and validated a Motion Artifact Quantification algorithm to automatically quantify the severity of motion artifacts on coronary computed tomography angiography (CCTA) images. The algorithm was then used to develop a Motion IQ Decision method to automatically identify whether a CCTA dataset is of sufficient diagnostic image quality or requires further correction. METHOD: The developed Motion Artifact Quantification algorithm includes steps to identify the right coronary artery (RCA) regions of interest (ROIs), segment vessel and shading artifacts, and to calculate the motion artifact score (MAS) metric. The segmentation algorithms were verified against ground-truth manual segmentations. The segmentation algorithms were also verified by comparing and analyzing the MAS calculated from ground-truth segmentations and the algorithm-generated segmentations. The Motion IQ Decision algorithm first identifies slices with unsatisfactory image quality using a MAS threshold. The algorithm then uses an artifact-length threshold to determine whether the degraded vessel segment is large enough to cause the dataset to be nondiagnostic. An observer study on 30 clinical CCTA datasets was performed to obtain the ground-truth decisions of whether the datasets were of sufficient image quality. A five-fold cross-validation was used to identify the thresholds and to evaluate the Motion IQ Decision algorithm. RESULTS: The automated segmentation algorithms in the Motion Artifact Quantification algorithm resulted in Dice coefficients of 0.84 for the segmented vessel regions and 0.75 for the segmented shading artifact regions. The MAS calculated using the automated algorithm was within 10% of the values obtained using ground-truth segmentations. The MAS threshold and artifact-length thresholds were determined by the ROC analysis to be 0.6 and 6.25 mm by all folds. The Motion IQ Decision algorithm demonstrated 100% sensitivity, 66.7% ± 27.9% specificity, and a total accuracy of 86.7% ± 12.5% for identifying datasets in which the RCA required correction. The Motion IQ Decision algorithm demonstrated 91.3% sensitivity, 71.4% specificity, and a total accuracy of 86.7% for identifying CCTA datasets that need correction for any of the three main vessels. CONCLUSION: The Motion Artifact Quantification algorithm calculated accurate (<10% error) motion artifact scores using the automated segmentation methods. The developed algorithms demonstrated high sensitivity (91.3%) and specificity (71.4%) in identifying datasets of insufficient image quality. The developed algorithms for automatically quantifying motion artifact severity may be useful for comparing acquisition techniques, improving best-phase selection algorithms, and evaluating motion compensation techniques.


Subject(s)
Artifacts , Computed Tomography Angiography , Coronary Angiography , Image Processing, Computer-Assisted/methods , Movement , Algorithms , Automation , Humans
9.
Opt Lett ; 43(15): 3722-3725, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30067664

ABSTRACT

A chiral metastructure composed of spatially separated double semi-periodic helices is proposed and investigated theoretically and experimentally in this Letter. Chirality-dependent electromagnetically induced transparency (EIT) and a slow light effect in the microwave region are observed from a numerical parameter study, while experimental results from the 3D printing sample yield good agreement with the theoretical findings. The studied EIT phenomenon arises as a result of destructive interference by coupled resonances, and the proposed chiral metastructure can be applied in areas such as polarization communication, pump-probe characterization, and quantum computing areas.

10.
Med Phys ; 45(2): 687-702, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29222954

ABSTRACT

PURPOSE: This study quantified the performance of coronary artery motion artifact metrics relative to human observer ratings. Motion artifact metrics have been used as part of motion correction and best-phase selection algorithms for Coronary Computed Tomography Angiography (CCTA). However, the lack of ground truth makes it difficult to validate how well the metrics quantify the level of motion artifact. This study investigated five motion artifact metrics, including two novel metrics, using a dynamic phantom, clinical CCTA images, and an observer study that provided ground-truth motion artifact scores from a series of pairwise comparisons. METHOD: Five motion artifact metrics were calculated for the coronary artery regions on both phantom and clinical CCTA images: positivity, entropy, normalized circularity, Fold Overlap Ratio (FOR), and Low-Intensity Region Score (LIRS). CT images were acquired of a dynamic cardiac phantom that simulated cardiac motion and contained six iodine-filled vessels of varying diameter and with regions of soft plaque and calcifications. Scans were repeated with different gantry start angles. Images were reconstructed at five phases of the motion cycle. Clinical images were acquired from 14 CCTA exams with patient heart rates ranging from 52 to 82 bpm. The vessel and shading artifacts were manually segmented by three readers and combined to create ground-truth artifact regions. Motion artifact levels were also assessed by readers using a pairwise comparison method to establish a ground-truth reader score. The Kendall's Tau coefficients were calculated to evaluate the statistical agreement in ranking between the motion artifacts metrics and reader scores. Linear regression between the reader scores and the metrics was also performed. RESULTS: On phantom images, the Kendall's Tau coefficients of the five motion artifact metrics were 0.50 (normalized circularity), 0.35 (entropy), 0.82 (positivity), 0.77 (FOR), 0.77(LIRS), where higher Kendall's Tau signifies higher agreement. The FOR, LIRS, and transformed positivity (the fourth root of the positivity) were further evaluated in the study of clinical images. The Kendall's Tau coefficients of the selected metrics were 0.59 (FOR), 0.53 (LIRS), and 0.21 (Transformed positivity). In the study of clinical data, a Motion Artifact Score, defined as the product of FOR and LIRS metrics, further improved agreement with reader scores, with a Kendall's Tau coefficient of 0.65. CONCLUSION: The metrics of FOR, LIRS, and the product of the two metrics provided the highest agreement in motion artifact ranking when compared to the readers, and the highest linear correlation to the reader scores. The validated motion artifact metrics may be useful for developing and evaluating methods to reduce motion in Coronary Computed Tomography Angiography (CCTA) images.


Subject(s)
Artifacts , Computed Tomography Angiography/methods , Coronary Angiography/methods , Movement , Humans , Phantoms, Imaging
11.
PLoS One ; 9(12): e115773, 2014.
Article in English | MEDLINE | ID: mdl-25541941

ABSTRACT

Recently, great concerns have been raised regarding the issue of medical image protection due to the increasing demand for telemedicine services, especially the teleradiology service. To meet this challenge, a novel chaos-based approach is suggested in this paper. To address the security and efficiency problems encountered by many existing permutation-diffusion type image ciphers, the new scheme utilizes a single 3D chaotic system, Chen's chaotic system, for both permutation and diffusion. In the permutation stage, we introduce a novel shuffling mechanism, which shuffles each pixel in the plain image by swapping it with another pixel chosen by two of the three state variables of Chen's chaotic system. The remaining variable is used for quantification of pseudorandom keystream for diffusion. Moreover, the selection of state variables is controlled by plain pixel, which enhances the security against known/chosen-plaintext attack. Thorough experimental tests are carried out and the results indicate that the proposed scheme provides an effective and efficient way for real-time secure medical image transmission over public networks.


Subject(s)
Computer Security , Diagnostic Imaging , Nonlinear Dynamics , Algorithms , Telemedicine , Time Factors
12.
Article in Chinese | MEDLINE | ID: mdl-25007682

ABSTRACT

The case of a 49-years-old man complained of pharyngalgia for one year and shortness of breath after activities for one week. Endoscopic laryngeal examination and computed tomography revealed a supraglottic mass. Direct laryngoscopy was performed and biopsy of the mass was carried out. Results of the histopathologic examination and immunohistochemical analysis were consistent with atypical carcinoid tumor of the larynx.


Subject(s)
Carcinoid Tumor/pathology , Laryngeal Neoplasms/pathology , Humans , Male , Middle Aged , Neoplasm Metastasis
13.
Comput Biol Med ; 43(8): 1000-10, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23816172

ABSTRACT

Recently, the increasing demand for telemedicine services has raised interest in the use of medical image protection technology. Conventional block ciphers are poorly suited to image protection due to the size of image data and increasing demand for real-time teleradiology and other online telehealth applications. To meet this challenge, this paper presents a novel chaos-based medical image encryption scheme. To address the efficiency problem encountered by many existing permutation-substitution type image ciphers, the proposed scheme introduces a substitution mechanism in the permutation process through a bit-level shuffling algorithm. As the pixel value mixing effect is contributed by both the improved permutation process and the original substitution process, the same level of security can be achieved in a fewer number of overall rounds. The results indicate that the proposed approach provides an efficient method for real-time secure medical image transmission over public networks.


Subject(s)
Computer Security , Information Theory , Telemedicine/methods , Algorithms , Humans , Internet , Models, Theoretical , Radiography, Thoracic
14.
Proc Natl Acad Sci U S A ; 100(13): 7841-6, 2003 Jun 24.
Article in English | MEDLINE | ID: mdl-12799464

ABSTRACT

To determine whether Akt activation was sufficient for the transformation of normal prostate epithelial cells, murine prostate restricted Akt kinase activity was generated in transgenic mice (MPAKT mice). Akt expression led to p70S6K activation, prostatic intraepithelial neoplasia (PIN), and bladder obstruction. mRNA expression profiles from MPAKT ventral prostate revealed similarities to human cancer and an angiogenic signature that included three angiogenin family members, one of which was found elevated in the plasma of men with prostate cancer. Thus, the MPAKT model may be useful in studying the role of Akt in prostate epithelial cell transformation and in the discovery of molecular markers relevant to human disease.


Subject(s)
Prostatic Intraepithelial Neoplasia/enzymology , Prostatic Intraepithelial Neoplasia/etiology , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins/metabolism , Animals , Enzyme Activation , Genotype , Humans , Immunoblotting , Immunohistochemistry , In Situ Hybridization , Male , Mice , Mice, Transgenic , Neovascularization, Pathologic , Oligonucleotide Array Sequence Analysis , Platelet Endothelial Cell Adhesion Molecule-1/biosynthesis , Prostate/enzymology , Prostate/metabolism , Prostate/pathology , Proto-Oncogene Proteins c-akt , RNA/metabolism , RNA, Messenger/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Transgenes , Urinary Bladder/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...