Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Cancer Med ; 13(2): e6949, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38334474

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) with an internal tandem duplication in the fms-like tyrosine kinase receptor 3 gene (FLT3-ITD) is associated with poor survival, and few studies have examined the impact of modifiable behaviors, such as nutrient quality and timing, in this subset of acute leukemia. METHODS: The influence of diet composition (low-sucrose and/or low-fat diets) and timing of diet were tested in tandem with anthracycline treatment in orthotopic xenograft mouse models. A pilot clinical study to test receptivity of pediatric leukemia patients to macronutrient matched foods was conducted. A role for the circadian protein, BMAL1 (brain and muscle ARNT-like 1), in effects of diet timing was studied by overexpression in FLT3-ITD-bearing AML cells. RESULTS: Reduced tumor burden in FLT3-ITD AML-bearing mice was observed with interventions utilizing low-sucrose and/or low-fat diets, or time-restricted feeding (TRF) compared to mice fed normal chow ad libitum. In a tasting study, macronutrient matched low-sucrose and low-fat meals were offered to pediatric acute leukemia patients who largely reported liking the meals. Expression of the circadian protein, BMAL1, was heightened with TRF and the low-sucrose diet. BMAL1 overexpression and treatment with a pharmacological inducer of BMAL1 was cytotoxic to FLT3-ITD AML cells. CONCLUSIONS: Mouse models for FLT3-ITD AML show that diet composition and timing slows progression of FLT3-ITD AML growth in vivo, potentially mediated by BMAL1. These interventions to enhance therapy efficacy show preliminary feasibility, as pediatric leukemia patients responded favorable to preparation of macronutrient matched meals.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Child , Mice , Animals , ARNTL Transcription Factors/genetics , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/drug therapy , Antineoplastic Agents/therapeutic use , Disease Models, Animal , Diet , Sucrose/therapeutic use , fms-Like Tyrosine Kinase 3/genetics , Mutation
3.
Mol Cancer Res ; 21(6): 548-563, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36787422

ABSTRACT

Despite effective new therapies, adaptive resistance remains the main obstacle in acute myelogenous leukemia (AML) therapy. Autophagy induction is a key mechanism for adaptive resistance. Leukemic blasts at diagnosis express higher levels of the apical autophagy kinase ULK1 compared with normal hematopoietic cells. Exposure to chemotherapy and targeted agents upregulate ULK1, hence we hypothesize that developing ULK1 inhibitors may present the unique opportunity for clinical translation of autophagy inhibition. Accordingly, we demonstrate that ULK1 inhibition, by genetic and pharmacologic means, suppresses treatment-induced autophagy, overcomes adaptive drug-resistance, and synergizes with chemotherapy and emerging antileukemia agents like venetoclax (ABT-199). The study next aims at exploring the underlying mechanisms. Mechanistically, ULK1 inhibition downregulates MCL1 antiapoptotic gene, impairs mitochondrial function and downregulates components of the CD44-xCT system, resulting in impaired reactive oxygen species (ROS) mitigation, DNA damage, and apoptosis. For further validation, several mouse models of AML were generated. In these mouse models, ULK1 deficiency impaired leukemic cell homing and engraftment, delayed disease progression, and improved survival. Therefore, in the study, we validated our hypothesis and identified ULK1 as an important mediator of adaptive resistance to therapy and an ideal candidate for combination therapy in AML. Therefore, we propose ULK1 inhibition as a therapeutically relevant treatment option to overcome adaptive drug-resistance in AML. IMPLICATIONS: ULK1 drives a cell-intrinsic adaptive resistance in AML and targeting ULK1-mediated autophagy can synergize with existing and emerging AML therapies to overcome drug-resistance and induce apoptosis.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Animals , Mice , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Antineoplastic Agents/pharmacology , Autophagy , Drug Resistance, Neoplasm , Apoptosis
4.
NAR Cancer ; 4(4): zcac039, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36518526

ABSTRACT

Acute myeloid leukemia (AML) is driven by numerous molecular events that contribute to disease progression. Herein, we identify hnRNP K overexpression as a recurrent abnormality in AML that negatively correlates with patient survival. Overexpression of hnRNP K in murine fetal liver cells results in altered self-renewal and differentiation potential. Further, murine transplantation models reveal that hnRNP K overexpression results in myeloproliferation in vivo. Mechanistic studies expose a direct functional relationship between hnRNP K and RUNX1-a master transcriptional regulator of hematopoiesis often dysregulated in leukemia. Molecular analyses show that overexpression of hnRNP K results in an enrichment of an alternatively spliced isoform of RUNX1 lacking exon 4. Our work establishes hnRNP K's oncogenic potential in influencing myelogenesis through its regulation of RUNX1 splicing and subsequent transcriptional activity.

5.
Leukemia ; 36(5): 1261-1273, 2022 05.
Article in English | MEDLINE | ID: mdl-35173274

ABSTRACT

The NOTCH1-MYC-CD44 axis integrates cell-intrinsic and extrinsic signaling to ensure the persistence of leukemia-initiating cells (LICs) in T-cell acute lymphoblastic leukemia (T-ALL) but a common pathway to target this circuit is poorly defined. Bromodomain-containing protein 4 (BRD4) is implicated to have a role in the transcriptional regulation of oncogenes MYC and targets downstream of NOTCH1, and here we demonstrate its role in transcriptional regulation of CD44. Hence, targeting BRD4 will dismantle the NOTCH1-MYC-CD44 axis. As a proof of concept, degrading BRD4 with proteolysis targeting chimera (PROTAC) ARV-825, prolonged the survival of mice in Notch1 mutated patient-derived xenograft (PDX) and genetic models (ΔPTEN) of T-ALL. Single-cell proteomics analysis from the PDX model, demonstrated quantitative reduction of LICs (CD34+ CD7+ CD19-) and downregulation of the NOTCH1-MYC-CD44 axis, along with cell cycle, apoptosis and PI3K/Akt pathways. Moreover, secondary transplantation from PDX and ΔPTEN models of T-ALL, confirmed delayed leukemia development and extended survival of mice engrafted with T-ALL from ARV-825 treated mice, providing functional confirmation of depletion of LICs. Hence, BRD4 degradation is a promising LIC-targeting therapy for T-ALL.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Humans , Hyaluronan Receptors/genetics , Mice , Nuclear Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Haematologica ; 107(6): 1311-1322, 2022 06 01.
Article in English | MEDLINE | ID: mdl-34732043

ABSTRACT

FMS-like Tyrosine Kinase 3 (FLT3) mutation is associated with poor survival in acute myeloid leukemia (AML). The specific Anexelekto/MER Tyrosine Kinase (AXL) inhibitor, ONO-7475, kills FLT3-mutant AML cells with targets including Extracellular- signal Regulated Kinase (ERK) and Myeloid Cell Leukemia 1 (MCL1). ERK and MCL1 are known resistance factors for Venetoclax (ABT-199), a popular drug for AML therapy, prompting the investigation of the efficacy of ONO-7475 in combination with ABT-199 in vitro and in vivo. ONO-7475 synergizes with ABT-199 to potently kill FLT3-mutant acute myeloid leukemia cell lines and primary cells. ONO-7475 is effective against ABT-199-resistant cells including cells that overexpress MCL1. Proteomic analyses revealed that ABT-199-resistant cells expressed elevated levels of pro-growth and anti-apoptotic proteins compared to parental cells, and that ONO-7475 reduced the expression of these proteins in both the parental and ABT-199-resistant cells. ONO-7475 treatment significantly extended survival as a single in vivo agent using acute myeloid leukemia cell lines and PDX models. Compared to ONO-7474 monotherapy, the combination of ONO-7475/ABT-199 was even more potent in reducing leukemic burden and prolonging the survival of mice in both model systems. These results suggest that the ONO-7475/ABT-199 combination may be effective for AML therapy.


Subject(s)
Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute , Protein Kinase Inhibitors , c-Mer Tyrosine Kinase , Animals , Apoptosis , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mice , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Protein Kinase Inhibitors/pharmacology , Proteomics , Sulfonamides/pharmacology , c-Mer Tyrosine Kinase/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/genetics
7.
Biochim Biophys Acta Mol Cell Res ; 1867(10): 118785, 2020 10.
Article in English | MEDLINE | ID: mdl-32590026

ABSTRACT

The galectin LGALS1 is a glycan binding protein that regulates intracellular (e.g. signal transduction) and extracellular processes (e.g. immunity, leukocyte mobilization) that support cell survival. The protein is best known for its role in RAS signaling. LGALS1 is important in acute lymphoblastic leukemia but its role in acute myeloid leukemia is not well defined. We previously found suppression of LGALS1 in AML cell lines OCI-AML3 and THP-1 sensitized both cell lines to BCL2 inhibitor ABT-737. In this study, we used an in vivo murine OCI-AML3 xenograft model to test whether reduction expression of LGALS1 affects survival. Mice bearing the OCI-AML3 cells with LGALS1 shRNA survived significantly longer than mice with control OCI-AML3 cells. Gene expression profiling using RNASeq was performed using the control and LGALS1 shRNA of p53 WT OCI-AML3 and p53 mutant THP-1 cells. The data reveal distinct differences between the two cell lines in number of genes affected, in pathways associated with these genes, in expression of oncogenes, and in the transcription factors involved. The p53 pathway is prominent in OCI-AML3 cells. An examination of LGALS1 mRNA in an AML patient population reveals elevated LGALS1 mRNA is associated with shorter disease free survival and increased blasts in the BM. This data with the xenograft model data presented suggest LGALS1 may be important in the AML microenvironment. In summary, the data presented here suggest that a strategy targeting LGALS1 may benefit AML patients.


Subject(s)
Galectin 1/metabolism , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Animals , Bone Marrow/pathology , Cell Line, Tumor , Cell Survival , Galectin 1/genetics , Gene Expression Regulation, Leukemic , Gene Ontology , Humans , Leukemia, Myeloid, Acute/genetics , Male , Mice, Inbred NOD , Mice, SCID , Prognosis , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Spleen/pathology , THP-1 Cells , Tumor Burden , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
8.
J Natl Cancer Inst ; 112(1): 95-106, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31077320

ABSTRACT

BACKGROUND: Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is an RNA-binding protein that is aberrantly expressed in cancers. We and others have previously shown that reduced hnRNP K expression downmodulates tumor-suppressive programs. However, overexpression of hnRNP K is the more commonly observed clinical phenomenon, yet its functional consequences and clinical significance remain unknown. METHODS: Clinical implications of hnRNP K overexpression were examined through immunohistochemistry on samples from patients with diffuse large B-cell lymphoma who did not harbor MYC alterations (n = 75). A novel transgenic mouse model that overexpresses hnRNP K specifically in B cells was generated to directly examine the role of hnRNP K overexpression in mice (three transgenic lines). Molecular consequences of hnRNP K overexpression were determined through proteomics, formaldehyde-RNA-immunoprecipitation sequencing, and biochemical assays. Therapeutic response to BET-bromodomain inhibition in the context of hnRNP K overexpression was evaluated in vitro and in vivo (n = 3 per group). All statistical tests were two-sided. RESULTS: hnRNP K is overexpressed in diffuse large B-cell lymphoma patients without MYC genomic alterations. This overexpression is associated with dismal overall survival and progression-free survival (P < .001). Overexpression of hnRNP K in transgenic mice resulted in the development of lymphomas and reduced survival (P < .001 for all transgenic lines; Line 171[n = 30]: hazard ratio [HR] = 64.23, 95% confidence interval [CI] = 26.1 to 158.0; Line 173 [n = 31]: HR = 25.27, 95% CI = 10.3 to 62.1; Line 177 [n = 25]: HR = 119.5, 95% CI = 42.7 to 334.2, compared with wild-type mice). Clinical samples, mouse models, global screening assays, and biochemical studies revealed that hnRNP K's oncogenic potential stems from its ability to posttranscriptionally and translationally regulate MYC. Consequently, Hnrnpk overexpression renders cells sensitive to BET-bromodomain-inhibition in both in vitro and transplantation models, which represents a strategy for mitigating hnRNP K-mediated c-Myc activation in patients. CONCLUSION: Our findings indicate that hnRNP K is a bona fide oncogene when overexpressed and represents a novel mechanism for c-Myc activation in the absence of MYC lesions.


Subject(s)
Disease Susceptibility , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Lymphoma, B-Cell/etiology , Lymphoma, B-Cell/metabolism , Adult , Aged , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Disease Models, Animal , Female , Gene Expression , Gene Expression Regulation, Neoplastic , Heterogeneous-Nuclear Ribonucleoprotein K/chemistry , Humans , Lymphoma, B-Cell/mortality , Lymphoma, B-Cell/pathology , Male , Mice , Mice, Transgenic , Middle Aged , Neoplasm Staging , Phenotype , Protein Binding , Protein Interaction Domains and Motifs/drug effects , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
9.
Toxicol Appl Pharmacol ; 362: 28-34, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30315841

ABSTRACT

Trichloroethene (TCE), a common environmental toxicant and widely used industrial solvent, has been implicated in the development of various autoimmune diseases (ADs). Although oxidative stress has been involved in TCE-mediated autoimmunity, the molecular mechanisms remain to be fully elucidated. These studies were, therefore, aimed to further explore the contribution of oxidative stress to TCE-mediated autoimmune response by specifically assessing the role of oxidative DNA damage, its repair enzyme poly(ADP-ribose)polymerase-1 (PARP-1) and apoptosis. To achieve this, groups of female MRL +/+ mice were treated with TCE, TCE plus N-acetylcysteine (NAC) or NAC alone (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day in drinking water) for 6 weeks. TCE treatment led to significantly higher levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the livers compared to controls, suggesting increased oxidative DNA damage. TCE-induced DNA damage was associated with significant activation of PARP-1 and increases in caspase-3, cleaved caspase-8 and -9, and alterations in Bcl-2 and Bax in the livers. Moreover, the TCE-mediated alterations corresponded with remarkable increases in the serum anti-ssDNA antibodies. Interestingly, NAC supplementation not only attenuated elevated 8-OHdG, PARP-1, caspase-3, cleaved caspase-9, and Bax, but also the TCE-mediated autoimmune response supported by significantly reduced serum anti-ssDNA antibodies. These results suggest that TCE-induced activation of PARP-1 followed by increased apoptosis presents a novel mechanism in TCE-associated autoimmune response and could potentially lead to development of targeted preventive and/or therapeutic strategies.


Subject(s)
Autoimmunity/drug effects , Poly (ADP-Ribose) Polymerase-1/physiology , Solvents/toxicity , Trichloroethylene/toxicity , 8-Hydroxy-2'-Deoxyguanosine , Acetylcysteine/pharmacology , Animals , Antibodies, Antinuclear/blood , Apoptosis/drug effects , DNA Damage , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/metabolism , Female , Liver/drug effects , Liver/metabolism , Mice, Knockout , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2-Associated X Protein/metabolism
10.
Haematologica ; 102(12): 2048-2057, 2017 12.
Article in English | MEDLINE | ID: mdl-28912176

ABSTRACT

Nearly one-third of patients with acute myeloid leukemia have FMS-like tyrosine kinase 3 mutations and thus have poor survival prospects. Receptor tyrosine kinase anexelekto is critical for FMS-like tyrosine kinase 3 signaling and participates in FMS-like tyrosine kinase 3 inhibitor resistance mechanisms. Thus, strategies targeting anexelekto could prove useful for acute myeloid leukemia therapy. ONO-7475 is an inhibitor with high specificity for anexelekto and MER tyrosine kinase. Herein, we report that ONO-7475 potently arrested growth and induced apoptosis in acute myeloid leukemia with internal tandem duplication mutation of FMS-like tyrosine kinase 3. MER tyrosine kinase-lacking MOLM13 cells were sensitive to ONO-7475, while MER tyrosine kinase expressing OCI-AML3 cells were resistant, suggesting that the drug acts via anexelekto in acute myeloid leukemia cells. Reverse phase protein analysis of ONO-7475 treated cells revealed that cell cycle regulators like cyclin dependent kinase 1, cyclin B1, polo-like kinase 1, and retinoblastoma were suppressed. ONO-7475 suppressed cyclin dependent kinase 1, cyclin B1, polo-like kinase 1 gene expression suggesting that anexelekto may regulate the cell cycle, at least in part, via transcriptional mechanisms. Importantly, ONO-7475 was effective in a human FMS-like tyrosine kinase 3 with internal tandem duplication mutant murine xenograft model. Mice fed a diet containing ONO-7475 exhibited significantly longer survival and, interestingly, blocked leukemia cell infiltration in the liver. In summary, ONO-7475 effectively kills acute myeloid leukemia cells in vitro and in vivo by mechanisms that involve disruption of diverse survival and proliferation pathways.


Subject(s)
Leukemia, Myeloid, Acute/pathology , Protein Kinase Inhibitors/pharmacology , Animals , Cell Cycle Proteins/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Heterografts , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mice , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Tandem Repeat Sequences , fms-Like Tyrosine Kinase 3/genetics
11.
Toxicol Appl Pharmacol ; 273(1): 189-95, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23993974

ABSTRACT

Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL+/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL+/+ mice were given TCE, NAC or TCE+NAC for 6 weeks (TCE, 10mmol/kg, i.p., every 4th day; NAC, 250mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies.


Subject(s)
Acetylcysteine/pharmacology , Autoimmune Diseases/drug therapy , Oxidative Stress/drug effects , Trichloroethylene/toxicity , Animals , Antibodies, Antinuclear/blood , Autoantibodies/blood , Autoimmune Diseases/chemically induced , Female , Interleukin-17/genetics , Interleukin-17/metabolism , Kidney/drug effects , Kidney/metabolism , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Mice , Mice, Inbred MRL lpr , Protein Carbonylation/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spleen/cytology , Spleen/drug effects , Spleen/metabolism
12.
Toxicol Appl Pharmacol ; 267(3): 276-83, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23352893

ABSTRACT

Mechanisms by which aniline exposure elicits splenotoxicity, especially a tumorigenic response, are not well-understood. Earlier, we have shown that aniline exposure leads to oxidative DNA damage and up-regulation of OGG1 and NEIL1/2 DNA glycosylases in rat spleen. However, the contribution of endonuclease III homolog 1 (NTH1) and apurinic/apyrimidinic endonuclease 1 (APE1) in the repair of aniline-induced oxidative DNA damage in the spleen is not known. This study was, therefore, focused on examining whether NTH1 and APE1 contribute to the repair of oxidative DNA lesions in the spleen, in an experimental condition preceding tumorigenesis. To achieve this, male SD rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. By quantitating the cleavage products, the activities of NTH1 and APE1 were assayed using substrates containing thymine glycol (Tg) and tetrahydrofuran, respectively. Aniline treatment led to significant increases in NTH1- and APE1-mediated BER activity in the nuclear extracts of spleen of aniline-treated rats compared to the controls. NTH1 and APE1 mRNA expression in the spleen showed 2.9- and 3.2-fold increases, respectively, in aniline-treated rats compared to the controls. Likewise, Western blot analysis showed that protein expression of NTH1 and APE1 in the nuclear extracts of spleen from aniline-treated rats was 1.9- and 2.7-fold higher than the controls, respectively. Immunohistochemistry indicated that aniline treatment also led to stronger immunoreactivity for both NTH1 and APE1 in the spleens, confined to the red pulp areas. These results, thus, show that aniline exposure is associated with induction of NTH1 and APE1 in the spleen. The increased repair activity of NTH1 and APE1 could be an important mechanism for the removal of oxidative DNA lesions. These findings thus identify a novel mechanism through which NTH1 and APE1 may regulate the repair of oxidative DNA damage in aniline-induced splenic toxicity.


Subject(s)
Aniline Compounds/toxicity , Carcinogens/toxicity , DNA Repair/physiology , DNA-(Apurinic or Apyrimidinic Site) Lyase/biosynthesis , Endodeoxyribonucleases/biosynthesis , Spleen/drug effects , Spleen/enzymology , Up-Regulation/drug effects , Animals , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/drug effects , DNA Damage/drug effects , DNA Damage/physiology , DNA Repair/drug effects , DNA-(Apurinic or Apyrimidinic Site) Lyase/therapeutic use , Endodeoxyribonucleases/therapeutic use , Enzyme Induction/drug effects , Enzyme Induction/physiology , Male , Rats , Rats, Sprague-Dawley , Up-Regulation/physiology
13.
Toxicol Appl Pharmacol ; 251(1): 1-7, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21145906

ABSTRACT

The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Earlier, we have shown that aniline-induced oxidative stress is associated with increased oxidative DNA damage in rat spleen. The base excision repair (BER) pathway is the major mechanism for the repair of oxidative DNA base lesions, and we have shown an up-regulation of 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase involved in the removal of 8-hydroxy-2'-deoxyguanosine (8-OHdG) adducts, following aniline exposure. Nei-like DNA glycosylases (NEIL1/2) belong to a family of BER proteins that are distinct from other DNA glycosylases, including OGG1. However, contribution of NEIL1/2 in the repair of aniline-induced oxidative DNA damage in the spleen is not known. This study was, therefore, focused on evaluating if NEILs also contribute to the repair of oxidative DNA lesions in the spleen following aniline exposure. To achieve that, male SD rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. The BER activity of NEIL1/2 was assayed using a bubble structure substrate containing 5-OHU (preferred substrates for NEIL1 and NEIL2) and by quantitating the cleavage products. Aniline treatment led to a 1.25-fold increase in the NEIL1/2-associated BER activity in the nuclear extracts of spleen compared to the controls. Real-time PCR analysis for NEIL1 and NEIL2 mRNA expression in the spleen revealed 2.7- and 3.9-fold increases, respectively, in aniline-treated rats compared to controls. Likewise, Western blot analysis showed that protein expression of NEIL1 and NEIL2 in the nuclear extract of spleens from aniline-treated rats was 2.0- and 3.8-fold higher than controls, respectively. Aniline treatment also led to stronger immunoreactivity for NEIL1 and NEIL2 in the spleens, confined to the red pulp areas. These studies, thus, show that aniline-induced oxidative stress is associated with an induction of NEIL1/2. The increased NIEL-mediated BER activity is another indication of aniline-induced oxidative damage in the spleen and could constitute another important mechanism of removal of oxidative DNA lesions, especially in transcribed DNA following aniline insult.


Subject(s)
Aniline Compounds/toxicity , DNA Glycosylases/biosynthesis , DNA Repair/drug effects , Oxidative Stress/drug effects , Spleen/drug effects , Administration, Oral , Aniline Compounds/administration & dosage , Animals , Blotting, Western , DNA Glycosylases/genetics , Enzyme Induction , Gene Expression Regulation, Enzymologic , Immunohistochemistry , Male , Polymerase Chain Reaction , RNA, Messenger/biosynthesis , Rats , Rats, Sprague-Dawley , Spleen/enzymology , Substrate Specificity , Time Factors
14.
Toxicol Appl Pharmacol ; 250(2): 213-20, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21070798

ABSTRACT

Aniline exposure is associated with toxicity to the spleen leading to splenomegaly, hyperplasia, fibrosis and a variety of sarcomas of the spleen on chronic exposure. In earlier studies, we have shown that aniline exposure leads to iron overload, oxidative stress and activation of redox-sensitive transcription factors, which could regulate various genes leading to a tumorigenic response in the spleen. However, molecular mechanisms leading to aniline-induced cellular proliferation in the spleen remain largely unknown. This study was, therefore, undertaken on the regulation of G1 phase cell cycle proteins (cyclins), expression of cyclin-dependent kinases (CDKs), phosphorylation of retinoblastoma protein (pRB) and cell proliferation in the spleen, in an experimental condition preceding a tumorigenic response. Male SD rats were treated with aniline (0.5 mmol/kg/day via drinking water) for 30 days (controls received drinking water only), and splenocyte proliferation, protein expression of G1 phase cyclins, CDKs and pRB were measured. Aniline treatment resulted in significant increases in splenocyte proliferation, based on cell counts, cell proliferation markers including proliferating cell nuclear antigen (PCNA), nuclear Ki67 protein (Ki67) and minichromosome maintenance (MCM), MTT assay and flow cytometric analysis. Western blot analysis of splenocyte proteins from aniline-treated rats showed significantly increased expression of cyclins D1, D2, D3 and E, as compared to the controls. Similarly, real-time PCR analysis showed significantly increased mRNA expression for cyclins D1, D2, D3 and E in the spleens of aniline-treated rats. The overexpression of these cyclins was associated with increases in the expression of CDK4, CDK6, CDK2 as well as phosphorylation of pRB protein. Our data suggest that increased expression of cyclins, CDKs and phosphorylation of pRB protein could be critical in cell proliferation, and may contribute to aniline-induced tumorigenic response in the spleen.


Subject(s)
Aniline Compounds/toxicity , Carcinogens/toxicity , Cyclin-Dependent Kinases/drug effects , Cyclins/drug effects , Gene Expression Regulation/drug effects , Animals , Blotting, Western , Cell Proliferation/drug effects , Cyclin-Dependent Kinases/genetics , Cyclins/genetics , Disease Models, Animal , Flow Cytometry , Male , Phosphorylation/drug effects , Polymerase Chain Reaction , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Spleen/cytology , Spleen/drug effects , Spleen/metabolism
15.
Free Radic Biol Med ; 48(4): 513-8, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-19969074

ABSTRACT

The splenic toxicity of aniline is characterized by vascular congestion, hyperplasia, fibrosis, and the development of a variety of sarcomas in rats. However, the underlying mechanisms by which aniline elicits splenotoxic response are not well understood. Previously we have shown that aniline exposure causes oxidative damage to the spleen. To further explore the oxidative mechanism of aniline toxicity, we evaluated the potential contribution of heme oxygenase-1 (HO-1), which catalyzes heme degradation and releases free iron. Male SD rats were given 1 mmol/kg/day aniline in water by gavage for 1, 4, or 7 days, and respective controls received water only. Aniline exposure led to significant increases in HO-1 mRNA expression in the spleen (2-and 2.4-fold at days 4 and 7, respectively) with corresponding increases in protein expression, as confirmed by ELISA and Western blot analysis. Furthermore, immunohistochemical assessment of spleen showed stronger immunostaining for HO-1 in the spleens of rats treated for 7 days, confined mainly to the red pulp areas. No changes were observed in mRNA and protein levels of HO-1 after 1 day exposure. The increase in HO-1 expression was associated with increases in total iron (2.4-and 2.7-fold), free iron (1.9-and 3.5-fold), and ferritin levels (1.9-and 2.1-fold) at 4 and 7 days of aniline exposure. Our data suggest that HO-1 up-regulation in aniline-induced splenic toxicity could be a contributing pro-oxidant mechanism, mediated through iron release, and leading to oxidative damage.


Subject(s)
Aniline Compounds/pharmacology , Carcinogens , Gene Expression Regulation, Enzymologic , Heme Oxygenase-1/biosynthesis , Oxidative Stress , Spleen/drug effects , Up-Regulation , Animals , Antigens, CD/biosynthesis , Antigens, Differentiation, Myelomonocytic/biosynthesis , Blotting, Western , Enzyme-Linked Immunosorbent Assay/methods , Ferritins/metabolism , Immunohistochemistry/methods , Iron/chemistry , Male , Rats , Rats, Sprague-Dawley
16.
Toxicol Appl Pharmacol ; 237(2): 188-95, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19332086

ABSTRACT

Even though reactive oxygen and nitrogen species (RONS) are implicated as mediators of autoimmune diseases (ADs), little is known about contribution of protein oxidation (carbonylation and nitration) in the pathogenesis of such diseases. The focus of this study was, therefore, to establish a link between protein oxidation and induction and/or exacerbation of autoimmunity. To achieve this, female MRL +/+ mice were treated with trichloroethene (TCE), an environmental contaminant known to induce autoimmune response, for 6 or 12 weeks (10 mmol/kg, i.p., every 4(th) day). TCE treatment resulted in significantly increased formation of nitrotyrosine (NT) and induction of iNOS in the serum at both 6 and 12 weeks of treatment, but the response was greater at 12 weeks. Likewise, TCE treatment led to greater NT formation, and iNOS protein and mRNA expression in the livers and kidneys. Moreover, TCE treatment also caused significant increases ( approximately 3 fold) in serum protein carbonyls (a marker of protein oxidation) at both 6 and 12 weeks. Significantly increased protein carbonyls were also observed in the livers and kidneys (2.1 and 1.3 fold, respectively) at 6 weeks, and to a greater extent at 12 weeks (3.5 and 2.1 fold, respectively) following TCE treatment. The increases in TCE-induced protein oxidation (carbonylation and nitration) were associated with significant increases in Th1 specific cytokine (IL-2, IFN-gamma) release into splenocyte cultures. These results suggest an association between protein oxidation and induction/exacerbation of autoimmune response. The results present a potential mechanism by which oxidatively modified proteins could contribute to TCE-induced autoimmune response and necessitates further investigations for clearly establishing the role of protein oxidation in the pathogenesis of ADs.


Subject(s)
Autoimmune Diseases/chemically induced , Protein Carbonylation/drug effects , Trichloroethylene/toxicity , Animals , Cells, Cultured , Cytokines/metabolism , Drug Administration Schedule , Female , Gene Expression Regulation/drug effects , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Mice , Mice, Inbred MRL lpr , Nitric Oxide Synthase Type II/metabolism , Oxidation-Reduction , Oxidative Stress/drug effects , Spleen/cytology , Trichloroethylene/administration & dosage , Tyrosine/analogs & derivatives , Tyrosine/metabolism
17.
Toxicol Appl Pharmacol ; 233(2): 247-53, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18793663

ABSTRACT

The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Splenotoxicity of aniline is associated with iron overload and generation of reactive oxygen species (ROS) which can cause oxidative damage to DNA, proteins and lipids (oxidative stress). 8-Hydroxy-2'-deoxyguanosine (8-OHdG) is one of the most abundant oxidative DNA lesions resulting from ROS, and 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase/lyase enzyme, plays a key role in the removal of 8-OHdG adducts. This study focused on examining DNA damage (8-OHdG) and repair (OGG1) in the spleen in an experimental condition preceding a tumorigenic response. To achieve that, male Sprague-Dawley rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. Aniline treatment led to a significant increase in splenic oxidative DNA damage, manifested as a 2.8-fold increase in 8-OHdG levels. DNA repair activity, measured as OGG1 base excision repair (BER) activity, increased by approximately 1.3 fold in the nuclear protein extracts (NE) and approximately 1.2 fold in the mitochondrial protein extracts (ME) of spleens from aniline-treated rats as compared to the controls. Real-time PCR analysis for OGG1 mRNA expression in the spleen revealed a 2-fold increase in expression in aniline-treated rats than the controls. Likewise, OGG1 protein expression in the NEs of spleens from aniline-treated rats was approximately 1.5 fold higher, whereas in the MEs it was approximately 1.3 fold higher than the controls. Aniline treatment also led to stronger immunostaining for both 8-OHdG and OGG1 in the spleens, confined to the red pulp areas. It is thus evident from our studies that aniline-induced oxidative stress is associated with increased oxidative DNA damage. The BER pathway was also activated, but not enough to prevent the accumulation of oxidative DNA damage (8-OHdG). Accumulation of mutagenic oxidative DNA lesions in the spleen following exposure to aniline could play a critical role in the tumorigenic process.


Subject(s)
Aniline Compounds/toxicity , Carcinogens/toxicity , DNA Damage/drug effects , Oxidative Stress/drug effects , Spleen/drug effects , 8-Hydroxy-2'-Deoxyguanosine , Animals , DNA Glycosylases/metabolism , DNA Repair , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/metabolism , Gene Expression Regulation/drug effects , Male , Mitochondrial Proteins/metabolism , Mutagens/toxicity , Nuclear Proteins/metabolism , Polymerase Chain Reaction , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Spleen/pathology
18.
Mech Ageing Dev ; 127(1): 64-9, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16257035

ABSTRACT

DNA repair sustains fidelity of genomic replication in proliferating cells and integrity of transcribed sequences in postmitotic tissues. The repair process is critical in the brain, because high oxygen consumption exacerbates the risk for accumulation of oxidative DNA lesions in postmitotic neurons. Most oxidative DNA damage is repaired by the base excision repair (BER) pathway, which is initiated by specialized DNA glycosylases. Because the newly discovered Nei-like mammalian DNA glycosylases (NEIL1/2) proficiently excise oxidized bases from bubble structured DNA, it was suggested that NEILs favor repair of transcribed or replicated DNA. In addition, since NEILs generate 3'-phosphate termini, which are poor targets for AP endonuclease (APE1), it was proposed that APE1-dependent and independent BER sub-pathways exist in mammalian cells. We measured expression and activities of BER enzymes during brain ontogeny, i.e., during a physiologic transition from proliferative to postmitotic differentiated state. While a subset of BER enzymes, exhibited declining expression and excision activities, expression of NEIL1 and NEIL2 glycosylases increased during brain development. Furthermore, the capacity for excision of 5-hydroxyuracil from bubble structured DNA was retained in the mature rat brain suggesting a role for NEIL glycosylases in maintaining the integrity of transcribed DNA in postmitotic brain.


Subject(s)
Brain/embryology , Brain/metabolism , DNA Repair/genetics , DNA/genetics , DNA/metabolism , Transcription, Genetic/genetics , Aging/physiology , Animals , Cell Nucleus/genetics , Gene Expression Regulation , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley
19.
Nucleic Acids Res ; 32(14): 4332-9, 2004.
Article in English | MEDLINE | ID: mdl-15310837

ABSTRACT

Repair of most modified and mispaired bases in the genome is initiated by DNA glycosylases, which bind to their respective targets and cleave the N-glycosyl bond to initiate base excision repair (BER). The mammalian homolog of the Escherichia coli MutY DNA glycosylase (MYH) cleaves adenine residues paired with either oxidized or non-modified guanines. MYH is crucial for the avoidance of mutations resulting from oxidative DNA damage. Multiple N-terminal splice variants of MYH exist in mammalian cells and it is likely that different variants result in the production of enzymes with altered properties. To investigate whether modifications in the N-terminus are consequential to MYH function, we overexpressed intact and N-terminal-deletion rat MYH proteins and examined their activities. We found that deletion of 75 amino acids, which perturbs the catalytic core that is conserved with E.coli MutY, abolished excision activity. In contrast, deletions limited to the extended mammalian N-terminal domain, differentially influenced steady-state excision rates. Notably, deletion of 50 amino acids resulted in an enzyme with a significantly lower K(m) favoring formation of excision products with 3'-OH termini. Our findings suggest that MYH isoforms divergent in the N-terminus influence excision rates and processing of abasic sites.


Subject(s)
DNA Glycosylases/chemistry , DNA Glycosylases/metabolism , Adenine/metabolism , Amino Acid Sequence , Animals , DNA/chemistry , DNA/metabolism , DNA Glycosylases/genetics , Guanine/analogs & derivatives , Magnesium Chloride/pharmacology , Molecular Sequence Data , Protein Structure, Tertiary , Rats , Sequence Alignment , Sequence Deletion
20.
Biochemistry ; 43(14): 4196-205, 2004 Apr 13.
Article in English | MEDLINE | ID: mdl-15065863

ABSTRACT

The DNA repair protein UvrB plays an indispensable role in the stepwise and sequential damage recognition of nucleotide excision repair in Escherichia coli. Our previous studies suggested that UvrB is responsible for the chemical damage recognition only upon a strand opening mediated by UvrA. Difficulties were encountered in studying the direct interaction of UvrB with adducts due to the presence of UvrA. We report herein that a single point mutation of Y95W in which a tyrosine is replaced by a tryptophan results in an UvrB mutant that is capable of efficiently binding to structure-specific DNA adducts even in the absence of UvrA. This mutant is fully functional in the UvrABC incisions. The dissociation constant for the mutant-DNA adduct interaction was less than 100 nM at physiological temperatures as determined by fluorescence spectroscopy. In contrast, similar substitutions at other residues in the beta-hairpin with tryptophan or phenylalanine do not confer UvrB such binding ability. Homology modeling of the structure of E. coli UvrB shows that the aromatic ring of residue Y95 and only Y95 directly points into the DNA binding cleft. We have also examined UvrB recognition of both "normal" bulky BPDE-DNA and protein-cross-linked DNA (DPC) adducts and the roles of aromatic residues of the beta-hairpin in the recognition of these lesions. A mutation of Y92W resulted in an obvious decrease in the efficiency of UvrABC incisions of normal adducts, while the incision of the DPC adduct is dramatically increased. Our results suggest that Y92 may function differently with these two types of adducts, while the Y95 residue plays an unique role in stabilizing the interaction of UvrB with DNA damage, most likely by a hydrophobic stacking.


Subject(s)
DNA Damage , DNA Helicases/chemistry , DNA Helicases/genetics , DNA Repair , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Mutagenesis, Site-Directed , Adenosine Triphosphatases/chemistry , Amino Acid Substitution/genetics , Base Sequence , Cross-Linking Reagents/chemistry , DNA Adducts/chemistry , DNA Glycosylases/chemistry , DNA-Binding Proteins/chemistry , Endodeoxyribonucleases/chemistry , Models, Molecular , Molecular Sequence Data , Protein Binding , Spectrometry, Fluorescence , Structural Homology, Protein , Substrate Specificity , Tryptophan/genetics , Tyrosine/genetics , Uracil-DNA Glycosidase
SELECTION OF CITATIONS
SEARCH DETAIL