Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(21): 15672-15680, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38766713

ABSTRACT

In this study, we have advanced the field of light-driven molecular rotary motors (LDMRMs) by achieving two pivotal goals: lowering the thermal helix inversion (THI) barrier and extending the absorption wavelength into the visible spectrum. This study involves the structural reengineering of a second-generation visible LDMRM, resulting in the synthesis of a novel class, specifically, 2-((2S)-5-methoxy-2-methyl-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-yl)-3-oxo-2,3-dihydro-1H-dibenzo[e,g]indole-6,9-dicarbonitrile. This redesigned motor stands out with its two photoisomerization stages and two thermal helix inversions, featuring exceptionally low THI barriers (4.00 and 2.05 kcal mol-1 at the OM2/MRCI level for the EM → EP and ZM → ZP processes, respectively). Moreover, it displays absorption wavelengths in the visible light range (482.98 and 465.76 nm for the EP and ZP isomers, respectively, at the TD-PBE0-D3/6-31G(d,p) level), surpassing its predecessors in efficiency, as indicated by the narrow HOMO-LUMO energy gap. Ultrafast photoisomerization kinetics (approximately 0.8-1.6 ps) and high quantum yields (around 0.3-0.6) were observed through trajectory surface hopping simulations. Additionally, the simulated time-resolved fluorescence emission spectrum indicates a significantly reduced "dark state" duration (0.09-0.26 ps) in these newly designed LDMRMs compared to the original ones, marking a substantial leap forward in the design and efficiency of LDMRMs.

2.
Phys Chem Chem Phys ; 25(18): 12800-12809, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37129050

ABSTRACT

We designed a novel highly efficient light-driven molecular rotary motor theoretically by using electronic structure calculations and nonadiabatic dynamics simulations, and it showed excellent performance for both photo- and thermal isomerization processes simultaneously. By the small structural modification based on 3-(2,7-dimethyl-2,3-dihydro-1H-inden-1-ylidene)-1-methylindolin-2-one (DDIYM) synthesized by Feringa et al. recently, an oxindole-based light-driven molecular rotary motor, 3-(1,5-dimethyl-4,5-dihydrocyclopenta[b]pyrrol-6(1H)-ylidene)-1-methylindolin-2-one (DDPYM), is proposed, which displays a significant electronic push-pull character and weak steric hindrance for double-bond isomerization. The newly designed motor DDPYM shows a remarkable improvement of the quantum yield for both EP → ZM and ZP → EM photoisomerization processes, compared to the original motor DDIYM. Furthermore, the rotary motion in photoisomerization processes of DDPYM behaves more like a pure axial rotational motion approximately, while that of DDIYM is an obvious precessional motion. The weakness of the steric hindrance reduces the energy barriers of the thermal helix EM → EP and ZM → ZP inversion steps, and would accelerate two ground-state isomerization steps significantly. Our results confirm the feasibility of simultaneously improving the efficiencies of photo- and thermal isomerization of oxindole-based light-driven molecular rotary motors and this design idea sheds light on the future development of more efficient molecular motors.

3.
Int J Mol Sci ; 23(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36077091

ABSTRACT

The working mechanism of conventional light-driven molecular rotary motors, especially Feringa-type motors, contains two photoisomerization steps and two thermal helix inversion steps. Due to the existence of a thermal helix inversion step, both the ability to work at lower temperatures and the rotation speed are limited. In this work, a two-stroke light-driven molecular rotary motor, 2-(1,5-dimethyl-4,5-dihydrocyclopenta[b]pyrrol-6(1H)-ylidene)-1,2-dihydro-3H-pyrrol-3-one (DDPY), is proposed, which is capable of performing unidirectional and repetitive rotation by only two photoisomerization (EP→ZP and ZP→EP) steps. With trajectory surface-hopping simulation at the semi-empirical OM2/MRCI level, the EP→ZP and ZP→EP nonadiabatic dynamics of DDPY were systematically studied at different temperatures. Both EP→ZP and ZP→EP photoisomerizations are on an ultrafast timescale (ca. 200-300 fs). The decay mode of EP→ZP photoisomerization is approximately bi-exponential, while that of ZP→EP photoisomerization is found to be periodic. For EP and ZP isomers of DDPY, after the S0→S1 excitation, the dynamical processes of nonadiabatic decay are both followed by twisting about the central C=C double bond and the pyramidalization of the C atom at the stator-axle linkage. The effect of temperature on the nonadiabatic dynamics of EP→ZP and ZP→EP photoisomerizations of DDPY has been systematically investigated. The average lifetimes of the S1 excited state and quantum yields for both EP→ZP and ZP→EP photoisomerization are almost temperature-independent, while the corresponding unidirectionality of rotation is significantly increased (e.g., 74% for EP→ZP and 72% for ZP→EP at 300 K vs 100% for EP→ZP and 94% for ZP→EP at 50 K) with lowering the temperature.


Subject(s)
Stroke , Humans , Isomerism , Rotation , Temperature
4.
Int J Mol Sci ; 23(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35409268

ABSTRACT

Working cycle of conventional light-driven molecular rotary motors (LDMRMs), especially Feringa-type motors, usually have four steps, two photoisomerization steps, and two thermal helix inversion (THI) steps. THI steps hinder the ability of the motor to operate at lower temperatures and limit the rotation speed of LDMRMs. A three-stroke LDMRM, 2-(2,7-dimethyl-2,3-dihydro-1H-inden-1-ylidene)-1,2-dihydro-3H-pyrrol-3-one (DDIY), is proposed, which is capable of completing an unidirectional rotation by two photoisomerization steps and one thermal helix inversion step at room temperature. On the basis of trajectory surface-hopping simulation at the semi-empirical OM2/MRCI level, the EP→ZP and ZP→EM nonadiabatic photoisomerization dynamics of DDIY were systematically analyzed. Quantum yields of EP→ZP and ZP→EM photoisomerization of DDIY are ca. 34% and 18%, respectively. Both EP→ZP and ZP→EM photoisomerization processes occur on an ultrafast time scale (ca. 100-300 fs). This three-stroke LDMRM may stimulate further research for the development of new families of more efficient LDMRMs.


Subject(s)
Stroke , Humans , Isomerism , Rotation
SELECTION OF CITATIONS
SEARCH DETAIL