Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Comput Biol Med ; 173: 108254, 2024 May.
Article in English | MEDLINE | ID: mdl-38520924

ABSTRACT

Chronic Lung Allograft Dysfunction (CLAD) is a critical post-transplant complication that predominantly determines the long-term survival rates and quality of life of patients undergoing lung transplantation. The limited efficacy of current immunosuppressive strategies underscores our incomplete understanding of the immunological aspects of CLAD. Hence, there is an urgent need for more comprehensive and targeted research to unravel the complex interplay of immune cells in the development and progression of CLAD. This study conducts an in-depth analysis of the immune environment in CLAD. By examining the gene expression profiles of T cells, natural killer cells, B cells, macrophages, and monocytes, we have elucidated a unique immunological landscape in CLAD compared to healthy controls. We highlight the heterogeneity within the immune populations and provide a comprehensive understanding of the immune mechanisms driving CLAD. Enrichment analysis identified specific pathways that are either overactive or suppressed in CLAD, revealing potential molecular targets for therapeutic intervention. Our findings emphasize the crucial role of T cells in the pathophysiology of CLAD, coordinating the immune response and revealing an amplified immune cell network, potentially leading to maladaptive tissue responses. By integrating a comprehensive cellular and molecular portrait of the immune environment, our research not only deepens our understanding of the pathogenesis of CLAD but also lays a foundational approach for the development of targeted therapies.


Subject(s)
Lung Transplantation , Transcriptome , Humans , Transcriptome/genetics , Quality of Life , Gene Expression Profiling , Lung , Allografts , Retrospective Studies
2.
ACS Nano ; 18(12): 9071-9081, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38470249

ABSTRACT

Ion-sieve adsorbents are effective materials in practical applications for extracting liquid lithium. However, it is greatly suppressed in adsorption capacity and selectivity (Li/Mg) under natural near-neutral conditions of seawater or salt lakes, due to the interference of in situ released H+ and Mg2+ impurity. This paper proposes an adsorbent with a microenvironment-modulating function as a solution. The introduction of quaternary ammonium groups into the carrier accelerates the migration of H+, while preventing the diffusion of Mg2+ by electrostatic repulsion. Besides, it can also prestore OH-, effectively consuming the generated hydrogen ions in situ. Based on the rational design, the alkali consumption of the microenvironment-modulating strategy is dramatically reduced to 1/144 of the traditional alkali-adding method. Additionally, adsorption performance is significantly promoted under natural pH conditions, with a maximum 33 times higher separation factor (selectivity) and 4 times higher adsorption capacity than commercial ion-sieve adsorbents. This development indicates the feasibility of using microenvironment modulation for effective lithium extraction and inspires the development of next-generation high-performance adsorbents.

3.
Acta Cir Bras ; 38: e384623, 2023.
Article in English | MEDLINE | ID: mdl-37878984

ABSTRACT

PURPOSE: To investigate the Shikonin (SHI) induce autophagy of hypertrophic scar-derived fibroblasts (HSFs) and the mechanism of which in repairing hypertrophic scar. METHODS: This study showed that SHI induced autophagy from HSFs and repaired skin scars through the AMPK/mTOR pathway. Alamar Blue and Sirius red were used to identify cell activity and collagen. Electron microscopy, label-free quantitative proteomic analysis, fluorescence and other methods were used to identify autophagy. The differences in the expression of autophagy and AMPK/mTOR pathway-related proteins after SHI treatment were quantitatively analyzed by Western blots. A quantitative real-time polymerase chain reaction assay was used to detect the expression of LC3, AMPK and ULK after adding chloroquine (CQ) autophagy inhibitor. RESULTS: After treatment with SHI for 24 hours, it was found that the viability of HSFs was significantly reduced, the protein expression of LC3-II/LC3-I and Beclin1 increased, while the protein expression of P62 decreased. The expression of phosphorylated AMPK increased and expression of phosphorylated mTOR decreased. After the use of CQ, the cell autophagy caused by SHI was blocked. The key genes LC3 and P62 were then reexamined by immunohistochemistry using a porcine full-thickness burn hypertrophic scar model, and the results verified that SHI could induce autophagy in vivo. CONCLUSIONS: These findings suggested that SHI promoted autophagy of HSFs cells, and the potential mechanism may be related to the AMPK/mTOR signal pathway, which provided new insights for the treatment of hypertrophic scars.


Subject(s)
Cicatrix, Hypertrophic , Animals , Swine , Cicatrix, Hypertrophic/drug therapy , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , AMP-Activated Protein Kinases , Proteomics , TOR Serine-Threonine Kinases/metabolism , Fibroblasts/pathology , Autophagy
4.
ACS Synth Biol ; 12(10): 3114-3123, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37722085

ABSTRACT

Streptomycetes have a strong ability to produce a vast array of bioactive natural products (NPs) widely used in agriculture and veterinary/human medicine. The recently developed CRISPR/Cas9-based genome editing tools have greatly facilitated strain improvement for target NP overproduction as well as novel NP discovery in Streptomyces. However, CRISPR/Cas9 shows high toxicity to the host, limiting its application in many Streptomyces strains with a low DNA transformation efficiency. In this study, we developed a low-toxicity CRISPR/Cas9D10A nickase (nCas9)-based genome editing tool in the model strain Streptomyces coelicolor M145. We showed that in the presence of both targeting sgRNA and Cas proteins, utilization of nCas9 instead of Cas9 significantly reduced the toxicity to the host and greatly enhanced cell survival. Using this tool, we achieved deletion of single genes and gene clusters with efficiencies of 87-100 and 63-87%, and simultaneous deletion of two genes or gene clusters with efficiencies of 47 and 43%, respectively. The editing efficiency of nCas9 is comparable to that of the Cas9-mediated editing tool. Finally, the nCas9-based editing tool was successfully applied for genome editing in the industrial rapamycin-producing strain Streptomyces rapamycinicus, in which CRISPR/Cas9 cannot work well. We achieved the deletion of three tested genes with an efficiency of 27.2-30%. Collectively, the CRISPR/nCas9-based editing tool offers a convenient and efficient genetic modification system for the engineering of streptomycetes, particularly those with low DNA transformation efficiency.


Subject(s)
Actinomycetales , Streptomyces , Humans , Gene Editing , CRISPR-Cas Systems/genetics , Deoxyribonuclease I/genetics , RNA, Guide, CRISPR-Cas Systems , Streptomyces/genetics , Streptomyces/metabolism , DNA , Actinomycetales/metabolism
5.
Environ Sci Technol ; 57(29): 10652-10661, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37458075

ABSTRACT

Solar-driven interfacial evaporation technology utilizes materials to form a thin layer on the water's surface, absorbs sunlight on this layer, completes the light-to-heat conversion, heats up the water, and vaporizes it. This greatly reduces energy loss to bulk water and greatly improves the evaporation rate for producing clean water. Additionally, three-dimensional (3D) evaporators are increasingly being applied in this field, and the cold surface generated by the rapid evaporation in the 3D evaporator can utilize environmental heat to achieve a net energy gain for the system. Both strategies improve the evaporation rate of the system, but 3D materials typically have high water contents and cannot avoid energy flow into non-evaporated water. To address this, we introduce the advantages of interfacial evaporation into 3D evaporation by constructing an evaporator with a highly conductive copper core skeleton and an outer layer of ultrathin water and by reasonably constructing interconnected evaporation frameworks. Investigating and optimizing the mutual influence of the ultrathin water layer on the framework, an evaporator with 40 pores per inch (ppi) can reach a maximum of 24.4 kg·m-2 h-1, indicating that 3D interfacial evaporators with ultrathin water layers concentrate energy flow to stimulate high evaporation rates. This strategy will promote the development of photothermal evaporation technology.


Subject(s)
Copper , Sunlight , Physical Phenomena , Forests , Water
6.
Acta cir. bras ; 38: e384623, 2023. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1519871

ABSTRACT

Purpose: To investigate the Shikonin (SHI) induce autophagy of hypertrophic scar-derived fibroblasts (HSFs) and the mechanism of which in repairing hypertrophic scar. Methods: This study showed that SHI induced autophagy from HSFs and repaired skin scars through the AMPK/mTOR pathway. Alamar Blue and Sirius red were used to identify cell activity and collagen. Electron microscopy, label-free quantitative proteomic analysis, fluorescence and other methods were used to identify autophagy. The differences in the expression of autophagy and AMPK/mTOR pathway-related proteins after SHI treatment were quantitatively analyzed by Western blots. A quantitative real-time polymerase chain reaction assay was used to detect the expression of LC3, AMPK and ULK after adding chloroquine (CQ) autophagy inhibitor. Results: After treatment with SHI for 24 hours, it was found that the viability of HSFs was significantly reduced, the protein expression of LC3-II/LC3-I and Beclin1 increased, while the protein expression of P62 decreased. The expression of phosphorylated AMPK increased and expression of phosphorylated mTOR decreased. After the use of CQ, the cell autophagy caused by SHI was blocked. The key genes LC3 and P62 were then reexamined by immunohistochemistry using a porcine full-thickness burn hypertrophic scar model, and the results verified that SHI could induce autophagy in vivo. Conclusions: These findings suggested that SHI promoted autophagy of HSFs cells, and the potential mechanism may be related to the AMPK/mTOR signal pathway, which provided new insights for the treatment of hypertrophic scars.


Subject(s)
Autophagy , Cicatrix, Hypertrophic , Fibroblasts
7.
Acta Cir Bras ; 37(9): e370902, 2022.
Article in English | MEDLINE | ID: mdl-36449813

ABSTRACT

PURPOSE: To investigate the active ingredients of walnut ointment (WO) and its mechanism in repairing wounds. METHODS: The ingredients of WO were detected by gas chromatography-mass spectrometry. The effect of linoleic acid (LA) was tested by in vitro Alamar Blue (AB) reagent. Image J software, histological and immunohistochemical analysis were used to confirm the healing effect of LA in the porcine skin model. The animals were euthanized after the experiment by injection of pentobarbital sodium. RESULTS: LA, 24% in WO, promotes keratinocytes and fibroblasts proliferation, which were 50.09% and 15.07% respectively higher than control (p < 0.05). The healing rate of the LA group (96.02% ± 2%, 98.58% ± 0.78%) was higher than the saline group (82.11% ± 3.37%, 88.72% ± 1.73%) at week 3 and week 4 (p < 0.05). The epidermal thickness of the LA was 0.16 ± 0.04 mm greater and the expression of the P63 and CK10 proteins was stronger in the LA group than the control (p < 0.05). CONCLUSIONS: LA, which is the main components in WO can promote full-thickness burning wounds (FBWs) by stimulating cell proliferation and differentiation.


Subject(s)
Juglans , Animals , Swine , Ointments , Linoleic Acid/pharmacology , Wound Healing , Accidents
8.
Environ Sci Technol ; 56(13): 9797-9805, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35748330

ABSTRACT

Solar-driven interfacial evaporation (SIE) is emerging as an energy-efficient technology to alleviate the global water shortages. However, there is a fatal disadvantage in using SIE, that is, the volatile organic compounds (VOCs) widely present in feedwater would concurrently evaporate and transport in distilled water, which threatens the water safety. Photocatalysis is a sustainable technology for pollution control, and after years of development, it has become a mature method. Considering the restriction by the insufficient reaction of the permeating VOCs on the two-dimensional (2D) light-available interface of conventional materials, a 3D photocatalytic approach can be established to boost VOC rejection for photothermal evaporation. In the present work, a light-permeable solar evaporator with 3D photocatalytic sites is constructed by a porous sponge decorated with BiOBrI nanosheets with oxygen-rich vacancies. The 3D microchannels in the evaporator provide a light-permeable path with the deepest irradiation depth of about 580 µm, and the reactive interface is increased by tens of times compared with the traditional 2D membrane, resulting in suppression of VOC remnants in distilled water by around four orders of magnitude. When evaporating river water containing 5 mg L-1 extra added phenol, no phenol residues (below 0.001 mg/L) were detected in the produced freshwater. This development is believed to provide a powerful strategy to resolve the VOC bottleneck of SIE.


Subject(s)
Volatile Organic Compounds , Water Purification , Membranes , Sunlight , Water/chemistry , Water Purification/methods
9.
Water Res ; 215: 118246, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35259560

ABSTRACT

Membrane distillation (MD) is an acknowledged promising technology for desalinating hypersaline brine, and as such can be a suitable candidate to further concentrate the seawater discharged from reverse osmosis process. Mineral scaling represents a major constraint against the application of MD for further desalination of concentrated seawater, especially when considering CaSO4 (gypsum) and NaCl. Up until now, it has been difficult to rely solely on membrane modification to mitigate CaSO4 scaling. Permeate-side aeration can lessen CaSO4 scaling, but does not permit to increase the water flux. Herein, we proposed the synergy of feed-side aeration and super slippery interface to perform concentrated seawater desalination via direct contact membrane distillation. The results of this study show that this synergistic effect could significantly increase the water flux, which was approximately 1.5 times higher in comparison to the membrane without aeration. Moreover, the synergistic effect effectively alleviates the complex scaling of concentrated seawater, achieving 90 wt% water recovery rate. Based on the observed results, we elucidated the mechanisms governing the enhanced water flux and scaling mitigation driven by the synergistic effect. In addition, we studied the optimal working condition for this system, unveiling that low-intensity large bubbles are more suitable as they lead to a better equilibrium between the economics and functionality of the process.


Subject(s)
Distillation , Water Purification , Filtration , Membranes, Artificial , Osmosis , Water
10.
Appl Microbiol Biotechnol ; 106(5-6): 2147-2159, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35218390

ABSTRACT

Rapamycin is an important macrocyclic antibiotic produced by Streptomyces rapamycinicus. In the rapamycin biosynthetic gene cluster (BGC), there are up to five regulatory genes, which have been shown to play important roles in the regulation of rapamycin biosynthesis. Here, we demonstrated that the rapamycin BGC-situated LAL family regulator RapH co-ordinately regulated the biosynthesis of both rapamycin and elaiophylin. We showed that rapH overexpression not only resulted in enhanced rapamycin production but also led to increased synthesis of another type I polyketide antibiotic, elaiophylin. Consistent with this, rapH deletion resulted in decreased production of both antibiotics. Through real-time RT-PCR combined with ß-glucuronidase reporter assays, four target genes controlled by RapH, including rapL (encoding a lysine cyclodeaminase)/rapH in the rapamycin BGC and ela3 (encoding a LuxR family regulator)/ela9 (encoding a hypothetical protein) in the elaiophylin BGC, were identified. A relatively conserved signature sequence recognized by RapH, which comprises two 4-nt inverted repeats separated by 8-nt, 5'-GTT/AC-N8-GTAC-3', was defined. Taken together, our findings demonstrated that RapH was involved in co-ordinated regulation of two disparate BGCs specifying two unrelated antibiotics, rapamycin and elaiophylin. These results further expand our knowledge of the regulation of antibiotic biosynthesis in S. rapamycinicus. KEY POINTS: • The cluster-situated regulator RapH controlled the synthesis of two antibiotics. • Four promoter regions recognized by RapH were identified. • A 16-nt signature DNA sequence essential for RapH regulation was defined.


Subject(s)
Sirolimus , Streptomyces , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Macrolides , Multigene Family , Sirolimus/metabolism , Streptomyces/genetics , Streptomyces/metabolism
11.
Int Wound J ; 19(5): 1221-1231, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34749441

ABSTRACT

Scars are common complications of burns and trauma, resulting in mental trauma, physical pain, and a heavy financial burden for patients. Specific and effective anti-scarring drugs are lacking in clinical practice. Phytochemicals are easily accessible, low in toxicity, and have various biological and pharmacological properties. Oxymatrine is a phytochemical that regulates autophagy networks. Autophagy is closely related to the maintenance, activity, differentiation, and life-death of skin fibroblasts during wound repair, which results in pathological scars. We hypothesised that oxymatrine may promote hypertrophic scar repair by inhibiting fibroblast autophagy. In vitro studies showed that inhibition of autophagy by oxymatrine decreased viability and collagen metabolism, and increased apoptosis of human scar fibroblasts (HSFs). In vivo studies showed that inhibition of autophagy by oxymatrine promoted scar repair, resulting in a significantly improved final outcome of the hypertrophic scars, a smaller scar area, decreased epidermal and dermal thickness, and a significant downregulation of CK10, P63, collagen I, α-SMA, and TGF-ß1. In summary, oxymatrine promoted hypertrophic scar repair by decreasing HSF viability and collagen, and inducing apoptosis via autophagy inhibition. This study provides a new perspective on the mechanism of hypertrophic burn scar formation, as well as key scientific data for the application of the phytochemical oxymatrine as a new method for the prevention and treatment of hypertrophic scars.


Subject(s)
Burns , Cicatrix, Hypertrophic , Alkaloids , Apoptosis , Autophagy , Burns/pathology , Cicatrix, Hypertrophic/metabolism , Collagen/therapeutic use , Fibroblasts , Humans , Quinolizines
12.
Acta cir. bras ; 37(9): e370902, 2022. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1402980

ABSTRACT

Purpose: To investigate the active ingredients of walnut ointment (WO) and its mechanism in repairing wounds. Methods: The ingredients of WO were detected by gas chromatography­mass spectrometry. The effect of linoleic acid (LA) was tested by in vitro Alamar Blue (AB) reagent. Image J software, histological and immunohistochemical analysis were used to confirm the healing effect of LA in the porcine skin model. The animals were euthanized after the experiment by injection of pentobarbital sodium. Results: LA, 24% in WO, promotes keratinocytes and fibroblasts proliferation, which were 50.09% and 15.07% respectively higher than control (p < 0.05). The healing rate of the LA group (96.02% ± 2%, 98.58% ± 0.78%) was higher than the saline group (82.11% ± 3.37%, 88.72% ± 1.73%) at week 3 and week 4 (p < 0.05). The epidermal thickness of the LA was 0.16 ± 0.04 mm greater and the expression of the P63 and CK10 proteins was stronger in the LA group than the control (p < 0.05). Conclusions: LA, which is the main components in WO can promote full-thickness burning wounds (FBWs) by stimulating cell proliferation and differentiation.


Subject(s)
Ointments/chemistry , Wound Healing/drug effects , Keratinocytes/drug effects , Linoleic Acid/therapeutic use , Nuts/chemistry , Burns/therapy , Fibroblasts
13.
Burns ; 47(2): 455-465, 2021 03.
Article in English | MEDLINE | ID: mdl-32736884

ABSTRACT

Effective treatments for non-healing burn wounds are an unmet need for 95% of burn sufferers. Approaches currently available to treat non-healing burn wounds are not satisfactory due to undesirable side-effects or expense. The anti-oxidation and antibacterial activities of walnuts are recommended for treating chronic diseases. Walnut ointment has been developed and successfully applied to treat non-healing burn wounds in our hospital for decades. We report herein a detailed retrospective case review examining patients' response to the walnut ointment. The walnut ointment has shortened healing time of non-healing burn wounds and improved clinical outcomes. In order to investigate the mechanism of action, walnut ointment has been applied on wounds of porcine full-thickness burn wound models. Histological and immunohistochemical analysis indicated our walnut ointment supports wound healing through promoting keratinocyte proliferation and differentiation. Taken together, we recommend the walnut ointment offers an effective and economical treatment for patients presenting with non-healing burn wounds.


Subject(s)
Burns , Juglans , Animals , Burns/drug therapy , Emollients , Humans , Ointments , Retrospective Studies , Swine , Wound Healing
14.
Environ Sci Technol ; 54(8): 5150-5158, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32186176

ABSTRACT

Solar distillation through photothermal evaporators has approached solar light energy (E1) limit under no solar concentration but still suffers from modest vapor and clean water production. Herein, a nature-inspired low-tortuosity three-dimensional (3D) evaporator is demonstrated to significantly improve water production. The solar evaporator, prepared from polypyrrole-modified maize straw (PMS), had upright vascular structures enabling high water lifting and horizontal microgaps facilitating broad water distribution to the out-surface. Consequently, this novel PMS evaporator dramatically enhanced the utilization of the solar heat energy stored in the environment (E2) for promoting evaporation. The maximum vapor generation rate of a single PMS respectively increases 2.5 and 6 times compared with the conventional 3D evaporators and the planar evaporators of an identical occupied area. Consequently, a scaled-up PMS array achieved a state-of-the-art vapor generation rate of 3.0 L m-2 h-1 (LMH) under a simulated condition and a record-high clean water production of 2.2 LMH for actual seawater desalination under natural conditions (1 sun intensity). This breakthrough reveals great potentials for cost-effective freshwater production as well as the rational design of high-performance photothermal evaporators for solar distillation.


Subject(s)
Distillation , Water Purification , Polymers , Pyrroles , Water
15.
Front Pharmacol ; 9: 590, 2018.
Article in English | MEDLINE | ID: mdl-29922164

ABSTRACT

Hypertrophic scars formed after burns remain a challenge in clinical practice. Development of effective scar therapies relies on validated animal models that mimic human hypertrophic scars. A consistent porcine full-thickness burn hypertrophic scar model has yet to be developed. We have previously reported that Shikonin induces apoptosis and reduces collagen production in hypertrophic scar fibroblasts in vitro and may therefore hold potential as a novel scar remediation therapy. In this study, we aimed to validate the potential of Shikonin on scar remediation in vivo. A novel porcine hypertrophic scar model was created after full-thickness burn wounds, and the effect of Shikonin on scar remediation was investigated. Clinical scar assessments, histology, and immunohistochemistry were used to evaluate scar appearance, morphology, and protein expression. Eight weeks after scar formation, clinical scar assessment indicated that the score of hypertrophic scars treated with Shikonin was significantly lower than that of the control group. Hypertrophic scars treated with Shikonin appeared flat, pink, and pliable. In addition, histological analysis indicated that hypertrophic scars treated with Shikonin exhibited reduced thickness of the epidermis and dermis, thin and even epithelial layers, reduced numbers of keratinocytes, uniform distribution of fibroblasts, and a parallel and loose arrangement of collagen fibers in the dermis. Moreover, immunohistochemical analysis indicated that Shikonin inhibited the expression of p63, cytokeratin 10, alpha-smooth muscle actin, transforming growth factor-beta 1, and collagen I, which play important roles in hypertrophic scar formation. Based on these results, we conclude that Shikonin has potential as a novel scar therapy.

16.
RSC Adv ; 8(34): 19116-19124, 2018 May 22.
Article in English | MEDLINE | ID: mdl-35539631

ABSTRACT

Recently, tremendous efforts have been devoted to creating inexpensive porous carbon materials with a high specific surface area (SSA) as adsorbents or catalysts for the efficient removal of organic pollutants. Here, activated porous carbon fibers with hierarchical structures were designed and constructed by an electrospinning technique, in situ polymerization, and activation and carbonization processes. Benefiting from the precursor fiber design and subsequent activation techniques, the activated porous carbon fibers (APCFs) derived from a benzoxazine/polyacrylonitrile (BA-a/PAN) precursor exhibited an ultrahigh SSA of 2337.16 m2 g-1 and a pore volume of 1.24 cm3 g-1, showing excellent adsorption capacity toward methylene blue (MeB, 2020 mg g-1). Interestingly, the APCFs after pre-adsorption of MeB also display robust activation of peroxymonosulfate (PMS) with singlet oxygen for the ultrafast removal of MeB. Meanwhile, the synergistic effect of adsorption and a catalytic oxidation reaction using APCFs can realize outstanding total organic carbon (TOC) removal in a comparatively short time. Moreover, a synergistic adsorption-oxidation mechanism for promoting the removal of MeB using APCFs was proposed. This study is useful for the design and development of novel metal-free carbon adsorbents, catalysts or catalyst carriers with an ultrahigh SSA for various applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...