Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Adv Healthc Mater ; : e2400841, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38725393

ABSTRACT

The persistent challenge of healing infectious wounds and the rise of bacterial resistance represent significant hurdles in contemporary medicine. In this study, based on the natural small molecule drug Rhein self-assembly to form hydrogels and coordinate assembly with silver ions (Ag+), a sustained-release carrier-free hydrogel with compact structure is constructed to promote the repair of bacterial-infected wounds. As a broad-spectrum antimicrobial agent, Ag+ can avoid the problem of bacterial resistance caused by the abuse of traditional antibiotics. In addition, due to the slow-release properties of Rhein hydrogel, continuous effective concentration of Ag+ at the wound site can be ensured. The assembly of Ag+ and Rhein makes the hydrogel system with enhanced mechanical stability. More importantly, it is found that Rhein effectively promotes skin tissue regeneration and wound healing by reprogramming M1 macrophages into M2 macrophages. Further mechanism studies show that Rhein realizes its powerful anti-inflammatory activity through NRF2/HO-1 activation and NF-κB inhibition. Thus, the hydrogel system combines the excellent antibacterial properties of Ag+ with the excellent anti-inflammatory and tissue regeneration ability of Rhein, providing a new strategy for wound management with dual roles.

2.
BMC Plant Biol ; 24(1): 389, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38730341

ABSTRACT

BACKGROUND: Kobreisa littledalei, belonging to the Cyperaceae family is the first Kobresia species with a reference genome and the most dominant species in Qinghai-Tibet Plateau alpine meadows. It has several resistance genes which could be used to breed improved crop varieties. Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) is a popular and accurate gene expression analysis method. Its reliability depends on the expression levels of reference genes, which vary by species, tissues and environments. However, K.littledalei lacks a stable and normalized reference gene for RT-qPCR analysis. RESULTS: The stability of 13 potential reference genes was tested and the stable reference genes were selected for RT-qPCR normalization for the expression analysis in the different tissues of K. littledalei under two abiotic stresses (salt and drought) and two hormonal treatments (abscisic acid (ABA) and gibberellin (GA)). Five algorithms were used to assess the stability of putative reference genes. The results showed a variation amongst the methods, and the same reference genes showed tissue expression differences under the same conditions. The stability of combining two reference genes was better than a single one. The expression levels of ACTIN were stable in leaves and stems under normal conditions, in leaves under drought stress and in roots under ABA treatment. The expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression was stable in the roots under the control conditions and salt stress and in stems exposed to drought stress. Expression levels of superoxide dismutase (SOD) were stable in stems of ABA-treated plants and in the roots under drought stress. Moreover, RPL6 expression was stable in the leaves and stems under salt stress and in the stems of the GA-treated plants. EF1-alpha expression was stable in leaves under ABA and GA treatments. The expression levels of 28 S were stable in the roots under GA treatment. In general, ACTIN and GAPDH could be employed as housekeeping genes for K. littledalei under different treatments. CONCLUSION: This study identified the best RT-qPCR reference genes for different K. littledalei tissues under five experimental conditions. ACTIN and GAPDH genes can be employed as the ideal housekeeping genes for expression analysis under different conditions. This is the first study to investigate the stable reference genes for normalized gene expression analysis of K. littledalei under different conditions. The results could aid molecular biology and gene function research on Kobresia and other related species.


Subject(s)
Genes, Plant , Real-Time Polymerase Chain Reaction , Seedlings , Seedlings/genetics , Cyperaceae/genetics , Reference Standards , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Droughts , Reproducibility of Results , Abscisic Acid/metabolism , Gibberellins/metabolism
3.
Cell Biochem Biophys ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38717641

ABSTRACT

Ovarian cancer (OC) ranks as the fifth leading cause of cancer-related death in women. The main contributors to the poor prognosis of ovarian cancer are the high rates of recurrence and metastasis. Studies have indicated a crucial role for hepatitis B virus X Ag-Transactivated Protein 8 (XTP8), a protein containing the DEP domain, in various cellular processes, including cell growth, movement, and differentiation, across several types of cancers. However, the role of XTP8 in ovarian cancer remains unclear. We observed elevated expression of XTP8 in ovarian cancer. Silencing XTP8 inhibited cell proliferation, promoted apoptosis, and yielded contrasting results in cells overexpressing XTP8. Furthermore, XTP8 facilitated ovarian cancer invasion and migration, triggering epithelial-mesenchymal transition (EMT). Mechanistically, XTP8 silencing led to reduced phosphorylation levels of AKT, increased p-AMPK levels, and decreased p-mTOR levels, while XTP8 overexpression exerted the opposite effects. Additionally, the activation of p-AMPK rescued the promoting effect of XTP8 on EMT in ovarian cancer cell lines, indicating that XTP8 acts as an oncogene by modulating the AKT/AMPK/mTOR pathway. Through transcriptome sequencing to identify downstream targets of XTP8, we found that XTP8 influences the expression of Caldesmon (CALD1) at both transcriptional and translational levels. CALD1 can be considered a downstream target of XTP8. The collaborative action of XTP8 and CALD1 activates the AKT/AMPK/mTOR pathway, regulating EMT to promote ovarian cancer progression. Inhibiting this signaling axis might represent a potential therapeutic target for ovarian cancer.

4.
J Hazard Mater ; 472: 134603, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38749243

ABSTRACT

Polybutylene adipate terephthalic acid (PBAT) is an emerging biodegradable material in food packaging. However, concerns have been raised regarding the potential hazards it could pose to food safety. In this study, the changes of PBAT films during food contact and the release of small molecules were inestigated by a multiscale approach. On a macro-scale, the surface roughness of the films increased with the reduction in the concentration of food simulants and the increase in contact temperatures, especially after immersion in acidic food environments. On a micro-scale, the crystallinity (Xc) and degradation indexes (DI) of the films increased by 5.7-61.2% and 7.8-48.6%, respectively, which led to a decrease in thermal stability. On a scale approaching the molecular level, 2,4-di-tert-butylphenol (2,4-DTBP) was detected by gas chromatography-mass spectrometry (GC-MS/MS) with the highest migration content, and the release behavior of 2,4-DTBP was further investigated by migration kinetics. In addition, terephthalic acid (TPA), a hydrolysis product of PBAT, was detected in acidic food environments by liquid chromatography-mass spectrometry (LC-MS/MS). The results of this study could provide practical guidance and assistance to promote sustainable development in the field of food packaging.

5.
Open Forum Infect Dis ; 11(4): ofae163, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38585185

ABSTRACT

Background: The aim of this study was to investigate the changes of epidemic characteristics of influenza activity pre- and post-coronavirus disease 2019 (COVID-19) in Beijing, China. Methods: Epidemiologic data were collected from the influenza surveillance system in Beijing. We compared epidemic intensity, epidemic onset and duration, and influenza transmissibility during the 2022-2023 season with pre-COVID-19 seasons from 2014 to 2020. Results: The overall incidence rate of influenza in the 2022-2023 season was significantly higher than that of the pre-COVID-19 period, with the record-high level of epidemic intensity in Beijing. The onset and duration of the influenza epidemic period in 2022-2023 season was notably later and shorter than that of the 2014-2020 seasons. Maximum daily instantaneous reproduction number (Rt) of the 2022-2023 season (Rt = 2.31) was much higher than that of the pre-COVID-19 period (Rt = 1.49). The incidence of influenza A(H1N1) and A(H3N2) were the highest among children aged 0-4 years and 5-14 years, respectively, in the 2022-2023 season. Conclusions: A late, intense, and short-term peak influenza activity was observed in the 2022-2023 season in Beijing. Children <15 years old were impacted the most by the interruption of influenza circulation during the COVID-19 pandemic. Maintaining continuous surveillance and developing targeted public health strategies of influenza is necessary.

6.
Nature ; 628(8007): 313-319, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570689

ABSTRACT

Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science1-3. Although TMT nanosheets have been produced by top-down exfoliation, their scale is below the gram level and requires a long processing time, restricting their effective application from laboratory to market4-8. We report the fast and scalable synthesis of a wide variety of MTe2 (M = Nb, Mo, W, Ta, Ti) nanosheets by the solid lithiation of bulk MTe2 within 10 min and their subsequent hydrolysis within seconds. Using NbTe2 as a representative, we produced more than a hundred grams (108 g) of NbTe2 nanosheets with 3.2 nm mean thickness, 6.2 µm mean lateral size and a high yield (>80%). Several interesting quantum phenomena, such as quantum oscillations and giant magnetoresistance, were observed that are generally restricted to highly crystalline MTe2 nanosheets. The TMT nanosheets also perform well as electrocatalysts for lithium-oxygen batteries and electrodes for microsupercapacitors (MSCs). Moreover, this synthesis method is efficient for preparing alloyed telluride, selenide and sulfide nanosheets. Our work opens new opportunities for the universal and scalable synthesis of TMT nanosheets for exploring new quantum phenomena, potential applications and commercialization.

7.
Chem Sci ; 15(15): 5451-5481, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38638219

ABSTRACT

In the era of the Internet of Things and wearable electronics, 3D-printed micro-batteries with miniaturization, aesthetic diversity and high aspect ratio, have emerged as a recent innovation that solves the problems of limited design diversity, poor flexibility and low mass loading of materials associated with traditional power sources restricted by the slurry-casting method. Thus, a comprehensive understanding of the rational design of 3D-printed materials, inks, methods, configurations and systems is critical to optimize the electrochemical performance of customizable 3D-printed micro-batteries. In this review, we offer a key overview and systematic discussion on 3D-printed micro-batteries, emphasizing the close relationship between printable materials and printing technology, as well as the reasonable design of inks. Initially, we compare the distinct characteristics of various printing technologies, and subsequently emphatically expound the printable components of micro-batteries and general approaches to prepare printable inks. After that, we focus on the outstanding role played by 3D printing design in the device architecture, battery configuration, performance improvement, and system integration. Finally, the future challenges and perspectives concerning high-performance 3D-printed micro-batteries are adequately highlighted and discussed. This comprehensive discussion aims at providing a blueprint for the design and construction of next-generation 3D-printed micro-batteries.

8.
Shock ; 61(5): 748-757, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38662612

ABSTRACT

ABSTRACT: Cardiac fibrosis, characterized by excessive collagen accumulation in heart tissues, poses a significant clinical challenge in various heart diseases and complications. Although salvianolic acid A (Sal A) from Danshen ( Salvia miltiorrhiza ) has shown promise in the treatment of ischemic heart disease, myocardial infarction, and atherosclerosis, its effects on cardiac fibrosis remain unexplored. Our study investigated the efficacy of Sal A in reducing cardiac fibrosis and elucidated its underlying molecular mechanisms. We observed that Sal A demonstrated significant cardioprotective effects against Angiotensin II (Ang II)-induced cardiac remodeling and fibrosis, showing a dose-dependent reduction in fibrosis in mice and suppression of cardiac fibroblast proliferation and fibrotic protein expression in vitro . RNA sequencing revealed that Sal A counteracted Ang II-induced upregulation of Txnip, and subsequent experiments indicated that it acts through the inflammasome and ROS pathways. These findings establish the antifibrotic effects of Sal A, notably attenuated by Txnip overexpression, and highlight its significant role in modulating inflammation and oxidative stress pathways. This underscores the importance of further research on Sal A and similar compounds, especially regarding their effects on inflammation and oxidative stress, which are key factors in various cardiovascular diseases.


Subject(s)
Angiotensin II , Carrier Proteins , Fibrosis , Lactates , Signal Transduction , Thioredoxins , Animals , Mice , Signal Transduction/drug effects , Carrier Proteins/metabolism , Male , Lactates/pharmacology , Lactates/therapeutic use , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , Cell Cycle Proteins/metabolism
9.
Sci Total Environ ; 927: 172006, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38554978

ABSTRACT

Grasslands account for approximately one-third of the global terrestrial carbon stocks. However, a limited understanding of the impact of grazing exclusion on carbon storage in grassland ecosystems hinders progress towards restoring overgrazed grasslands and promoting carbon sequestration. In this study, we conducted a comprehensive meta-analysis to investigate the effects of grazing exclusion on aboveground biomass (AGB) and soil organic carbon (SOC) in four grasslands: alpine grasslands (AP), tropical savannas (TS), temperate subhumid grasslands (TG), and a semi-desert steppe (SD). Our meta-analysis indicated that grazing exclusion significantly enhanced carbon sequestration in grassland ecosystems, and the benefits of carbon sequestration were most pronounced in the AP, followed by the TG, SD, and TS. Grazing exclusion duration (DUR) was a significant factor associated with the response of aboveground biomass (AGB) and soil organic carbon (SOC) to grazing exclusion. Moreover, the relationships between AGB and DUR were nonlinear, with existence thresholds of 18, 21, 12, 19, and 23 years in global grasslands (ALL), AP, TS, TG, and SD, respectively. However, the relationship between SOC and DUR was linear, with SOC continuing to increase as DUR increased (up to 40 years). The multi-objective optimization indicated that the optimal duration of grazing exclusion for grassland carbon sequestration was 18-20, 21-23, 12-14, 19-21, and 23-25 years for ALL, AP, TS, TG, and SD, respectively. Our study contributes to the enhancement of grazing management and offers better options for increasing carbon sequestration in grasslands.


Subject(s)
Biomass , Carbon Sequestration , Carbon , Grassland , Soil , Soil/chemistry , Carbon/analysis , Herbivory , Animals
10.
ACS Appl Mater Interfaces ; 16(12): 15133-15142, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38488729

ABSTRACT

Dynamic control of ultralong organic room-temperature phosphorescence (UORTP) is a charming target. Herein, we report a stimuli-responsive phosphorescence unit 7H-indolo[2,3-c]quinoline (NBCz) and its derivatives (PCBNBCz, FSO2NBCz, and N2BCzSO2NBCz) that show photo- and oxygen- synergistically induced afterglow activation and afterglow color change in the PMMA film. PCBNBCz and FSO2NBCz feature a donor-acceptor (D-A) structure, and N2BCzSO2NBCz features acceptor-bridged two different phosphorescence units (NBCz and N2BCz). The photoactivated UORTP of PCBNBCz and FSO2NBCz arises from the photoinduced consumption of oxygen in the PMMA film. It is clear that the phosphorescence unit NBCz contributes to subsequent photoinduced UORTP color change because the NBCz-doped PMMA film shows the same UORTP color change process. ESR and HRMS measurements confirmed that oxidation of NBCz occurs at the nitrogen atom of the quinoline ring via photogenerated superoxide radicals, which results in the UORTP color change. TDDFT calculations proved that after oxidation of NBCz, the T1 energy level declines significantly. Furthermore, photocontrolled selective expression of phosphorescence units is achieved in the case of N2BCzSO2NBCz. After further UV irradiation, oxidation of NBCz happened, and the oxidized form N2BCzSO2NBCz-O emitted the intrinsic orange UORTP of NBCz-O selectively and screened the intrinsic yellowish-green UORTP of N2BCz. Finally, multilevel photolithography can be demonstrated based on the photoactivated UORTP and the photoinduced UORTP color change. This work may give a deep insight into organic phosphorescence and pave a simple way for the development of stimulus-responsive smart UORTP materials.

11.
Chemistry ; 30(24): e202304200, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38340042

ABSTRACT

Regulation of fluorescence and self-assembly of a salicylaldehyde azine-containing amphiphile by a water-soluble pillar[5]arene via host-guest recognition in water was realized. The fluorescence and the self-assembled aggregates of the bola-type amphiphile G can be tailored by adding different amounts of water-soluble pillar[5]arene (WP5). In addition, the emission property and self-assembly behavior of G and WP5 are responsive to pH conditions. Furthermore, the fluorescence emission property of G and the regulation by WP5 or pH conditions was applied as information encryption material, rewritable paper, and erasable ink. We believe that this fluorescence regulation strategy is promising for the construction of advanced fluorescent organic materials.

12.
Environ Pollut ; 345: 123560, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38355080

ABSTRACT

Although growing evidences have proved the wide presence of organophosphate esters (OPEs) in marine environments, information on the tissue- and species-specific accumulation characteristics of these emerging pollutants in wild marine fish and the associated human exposure risks are currently lacking. Eleven OPEs were comprehensively investigated for their occurrence and tissue accumulation in 15 marine fish species and their living environment matrices (seawater and sediment) from the Beibu Gulf. The OPE concentrations were statistically higher in the liver (17.6-177 ng/g ww, mean 90.9 ± 52.1 ng/g ww) than those of muscle tissues (2.04-22.9 ng/g ww, mean 10.6 ± 5.6 ng/g ww). Tris (phenyl) phosphate (TPHP) was the most predominant OPE congeners in fish liver, and tris(2-chloropropyl) phosphate (TCIPP) and tris(2-chloroethyl) phosphate (TCEP) were dominant OPEs in the muscle. The results suggested different OPE profiles occurred between the tissues. The median logarithmic bioaccumulation factors (BAFs) of TPHP in the muscle and liver, and TCEP in muscle were higher than the regulatory benchmark value (BCF >3.7), indicating very strong bioaccumulation. Carnivorous benthic fish appear to potentially accumulate TPHP, while pelagic and omnivory fish tend to accumulate TCIPP and TCEP. Except for proteins and phospholipids, no significant relationships were found between OPE levels and other biological properties of the studied fish. The results implied that the species-specific accumulation of OPEs mainly attributed to habitat and feeding habit rather than the difference of biochemical composition among species. Metabolism may have a significant effect on the bioaccumulation of OPEs in marine fish. The dietary risks of OPEs for consumers in different age groups ranged from 2.02 × 10-4 to 3.01 × 10-3, indicating relatively low human exposure risks from fish consumption.


Subject(s)
Esters , Flame Retardants , Phosphines , Animals , Humans , Bioaccumulation , Organophosphates/metabolism , Phosphates , China , Environmental Monitoring , Flame Retardants/analysis
13.
Small ; : e2308646, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334202

ABSTRACT

An immune reaction known as inflammation serves as a shield from external danger signals, but an overactive immune system may additionally lead to tissue damage and even a variety of inflammatory disorders. By inheriting biological functionalities and serving as both a therapeutic medication and a drug carrier, cell membrane-based nanotherapeutics offer the potential to treat inflammatory disorders. To further strengthen the anti-inflammatory benefits of natural cell membranes, researchers alter and optimize the membranes using engineering methods. This review focuses on engineered cell membrane-based nanotherapeutics (ECMNs) and their application in treating inflammation-related diseases. Specifically, this article discusses the methods of engineering cell membranes for inflammatory diseases and examines the progress of ECMNs in inflammation-targeted therapy, inflammation-neutralizing therapy, and inflammation-immunomodulatory therapy. Additionally, the article looks into the perspectives and challenges of ECMNs in inflammatory treatment and offers suggestions as well as guidance to encourage further investigations and implementations in this area.

15.
J Colloid Interface Sci ; 659: 984-992, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219316

ABSTRACT

Triazine-based conjugated polymers (TCPs) are promising organic catalysts for green H2 production, since their photocatalytic performance can be easily regulated via appropriate molecular design. However, apart from weak absorption of visible light, weak charge separation and transport abilities also considerably restrict the photocatalytic performance of TCPs. Herein, we report two novel TCP photocatalysts with donor-acceptor (D-A) and donor-π-acceptor (D-π-A) structures using dibenzo[g,p]chrysene (Dc), thiophene (T), and 2,4,6-triphenyl-1,3,5-triazine (Tz) as the donor, π-spacer, and acceptor, respectively. Compared to Dc-Tz with a D-A structure, Dc-T-Tz exhibits a broader light absorption edge and more efficient charge separation and transmission due to its D-π-A structure and strong dipole effect. These properties enable Dc-T-Tz to display a prominent H2 production rate of 45.13 mmol h-1 g-1 under ultraviolet-visible (UV-Vis) light (λ > 300 nm). Therefore, Dc-T-Tz represents state-of-the-art TCP photocatalysts to date.

16.
ACS Appl Mater Interfaces ; 15(47): 54732-54742, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37964465

ABSTRACT

We successfully tune ultralong organic room-temperature phosphorescence (UORTP) by a simple strategy of precisely modifying nitrogen atoms on Phosphorescence Units, and colorful ultralong phosphorescence can be achieved. We for the first time investigate the structure-function relationship between phosphorescence properties and molecular structures of Phosphorescence Units. With BCz and BCz-1 as comparison, eight new Phosphorescence Units were synthesized by introducing one or two nitrogen atoms to the naphthalene moiety. For all the 10 Phosphorescence Units, their room-temperature ultralong phosphorescence in the PMMA film should be assigned to monomer phosphorescence from intrinsic T1 decay. For Phosphorescence Units series I (BCz, NBCz-1, NBCz-2, NBCz-3, NBCz-4, NBCz-5, and NBCz-6), introducing one nitrogen atom to the naphthalene moiety can significantly affect the phosphorescence properties of Phosphorescence Units, and the effect is quite complicated. For modification on the inner ring, the T1 energy level of NBCz-1 decreases, and the red shift of UORTP occurs while the T1 energy level of NBCz-2 increases and the blue shift of UORTP happens. For modification on the outer ring, no phosphorescence color change is observed for NBCz-3 and NBCz-4, but their phosphorescence lifetimes vary notably due to different intersystem crossing efficiencies; as the modification site approaches the central five-member ring, the T1 energy levels of NBCz-5 and NBCz-6 decrease, and their UORTP red shifts dramatically. For Phosphorescence Units series II (BCz, 2NBCz, BCz-1, and 2NBCz-1), introducing two nitrogen atoms to the outer six-member ring reduces energy level of T1 excitons and leads to incredible red shift of UORTP for BCz and 2NBCz while surprisingly energy levels of T1 excitons rise and UORTP blue shifts for BCz-1 and 2NBCz-1. Under the condition of proper modification sites, it is true that the more the additional nitrogen atoms, the more red-shifted the ultralong phosphorescence. This study may expand our knowledge of organic phosphorescence and lay the foundation for its future applications.

17.
ACS Nano ; 17(22): 22580-22590, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37961989

ABSTRACT

Biodegradable and biocompatible microscale energy storage devices are very crucial for environmentally friendly microelectronics and implantable medical applications. Herein, a biodegradable and biocompatible microsupercapacitor (BB-MSC) with satisfying overall performance is realized via the combination of three-dimensional (3D) printing technique and biodegradable materials. Due to the 3D-interconnected structure of electrodes and elaborated design of electrolyte, the as-prepared BB-MSC exhibits superior overall performance than most of biodegradable devices, including a wide operation voltage of 1.8 V, high areal specific capacitance of 251 mF/cm2, good cycle stability, and favorable low-temperature resistance (-20 °C), demonstrative of reliability and practicality of our devices even in frosty environments. Importantly, the smooth degradation has been realized for the BB-MSC after being buried in natural soil for ∼90 days, and its implantation does not affect the healthy status of SD rats. Therefore, this work explores avenues for the design and construction of environmentally friendly and biocompatible microscale energy storage devices.


Subject(s)
Rats, Sprague-Dawley , Animals , Rats , Reproducibility of Results , Electric Capacitance , Electrodes , Physical Phenomena
18.
Front Cell Infect Microbiol ; 13: 1194133, 2023.
Article in English | MEDLINE | ID: mdl-37829609

ABSTRACT

This study aimed to explore the epidemic, clinical characteristics, and molecular and virulence attributes of Klebsiella pneumoniae serotype K54 (K54-Kp). A retrospective study was conducted on 328 strains of Klebsiella pneumoniae screened in a Chinese hospital from January 2016 to December 2019. The virulence genes and antibiotic resistance genes (ARGs) were detected by PCR, and a drug sensitivity test was adopted to detect drug resistance. Multilocus sequence typing (MLST) and PFGE were performed to determine the clonal correlation between isolates. Biofilm formation assay, serum complement-mediated killing, and Galleria mellonella infection were used to characterize the virulence potential. Our results showed that thirty strains of K54-Kp were screened from 328 strains of bacteria, with an annual detection rate of 2.29%. K54-Kp had a high resistance rate to antibiotics commonly used in the clinic, and patients with hepatobiliary diseases were prone to K54-Kp infection. MLST typing showed 10 sequence typing, mainly ST29 (11/30), which concentrated in the B2 cluster. K54-Kp primarily carried virulence genes of aerobactin, silS, allS, wcaG, wabG, and mrkD, among which the terW gene was closely related to ST29 (p<0.05). The strains infected by the bloodstream had strong biofilm formation ability (p<0.05). Most strains were sensitive to serum. Still, the virulence of pLVPK-like virulence plasmid in ST29-K54 Klebsiella pneumoniae was lower than that of ST11 type and NTUH-K2044 in the Galleria mellonella model. Therefore, these findings supply a foundation to roundly comprehend K54-Kp, and clinicians should strengthen supervision and attention.


Subject(s)
Klebsiella Infections , Moths , Animals , Humans , Virulence/genetics , Klebsiella pneumoniae , Multilocus Sequence Typing , Retrospective Studies , Phenotype , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Plasmids/genetics , Klebsiella Infections/microbiology
19.
Psychol Res Behav Manag ; 16: 3607-3621, 2023.
Article in English | MEDLINE | ID: mdl-37693329

ABSTRACT

Purpose: Drawing from the sociocultural-self model, this study aims to examine the influence of self-affirmation on the academic outcomes of lower-class migrant students, as well as the psychological mechanism underlying this phenomenon. Patients and Methods: A field experiment was conducted at a comprehensive secondary school in the southern region of China. Our study sample comprised 1534 immigrant students from diverse regions across the country, with an average proportion of 59.6% of students registered with a rural hukou. The hukou system plays a pivotal role in measuring social class in China, thus it was used as a proxy for lower and higher social class, with rural hukou students considered to be lower-class and urban hukou students considered to be higher-class. Prior to the English test, students in the self-affirmed group were engaged in a brief writing exercise that focused on their core values, whereas the control group wrote about a neutral topic. Results: The primary outcome of interest was the effect of self-affirmation on English test scores, whereas the secondary outcome was the students' survey stereotype threat. The results exhibit that self-affirmation more significantly improved the English test performance of lower-class students compared to higher-class students, and this positive effect was mediated by reducing stereotype threat. Conclusion: Our findings unravel the impact of self-affirmation on the academic performance of migrant students from different social classes and signify the mediating role of stereotype threat in this process. The present study extends previous findings to students from immigrant families in the Chinese cultural context, and these findings demonstrate that self-affirmation can constitute a promising intervention for stereotype threat and achievement gaps due to social class differences in immigrant family groups. Considering that this intervention takes only about 15 minutes of time, entails almost zero cost, does no harm, and that it focuses on disadvantaged immigrant students, it may provide valuable insights for educational policies to be implemented in a new type of migrant city such as Shenzhen.

20.
J Poult Sci ; 60: 2023024, 2023.
Article in English | MEDLINE | ID: mdl-37711228

ABSTRACT

Artemisia annua L. is a natural herb with a variety of bioactive substances, which can play a variety of biological functions such as anti-inflammatory, antioxidant, antibacterial and antiviral, and can be used as a potential feed additive. The purpose of this study was to investigate the effects of different doses of Artemisia annua L. water extract (AAWE) on growth performance and intestinal related indicators in broilers. A total of 200 one-day-old Arbor Acre broilers were selected and randomly divided into five treatment groups, with five replicates in each group and eight birds per replicate. The control group was fed a basal diet, whereas the other groups were fed a basal diet supplemented with 0.5, 1.0, 1.5, or 2.0 g/kg AAWE. On d 21, with the increase in AAWE dose, final body weight and feed efficiency showed a quadratic increase effect, whereas feed intake showed a linear reduction effect; however, the apparent metabolic rate of dry matter, crude protein, and ether extract increased quadratically on d 42. In addition, the activity of duodenal chymotrypsin and trypsin, and of jejunal lipase quadratically increased, whereas the intestine crypt depth linearly decreased on d 42. The number of total anaerobic bacteria increased quadratically, whereas the number of Escherichia coli decreased quadratically. The number of Lactobacillus increased linearly, whereas H2S emission linearly decreased on d 21; moreover, NH3 emission (24 h) quadratically decreased on d 42. In conclusion, AAWE promoted the growth performance and intestinal related indicators of broilers.

SELECTION OF CITATIONS
SEARCH DETAIL
...