Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
1.
Nutrients ; 16(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276557

ABSTRACT

Panax ginseng Meyer and Inula japonica Thunb. are well established in traditional medicine and are known for their therapeutic properties in managing a range of ailments such as diabetes, asthma, and cancer. Although P. ginseng and I. japonica can alleviate pulmonary fibrosis (PF), the anti-fibrosis effect on PF by the combination of two herbal medicines remains unexplored. Therefore, this study explores this combined effect. In conditions that were not cytotoxic, MRC-5 cells underwent treatment using the formula combining P. ginseng and I. japonica (ISE081), followed by stimulation with transforming growth factor (TGF)-ß1, to explore the fibroblast-to-myofibroblast transition (FMT). After harvesting the cells, mRNA levels and protein expressions associated with inflammation and FMT-related markers were determined to evaluate the antiinflammation activities and antifibrosis effect of ISE081. Additionally, the anti-migratory effects of ISE081 were validated through a wound-healing assay. ISE081 remarkably reduced the mRNA levels of interleukin (IL)-6, IL-8, α-smooth muscle actin (SMA), and TGF-ß1 in MRC-5 cells and suppressed the α-SMA and fibronectin expressions, respectively. Furthermore, ISE081 inhibited Smad2/3 phosphorylation and wound migration of MRC-5 cells. Under the same conditions, comparing those of ISE081, P. ginseng did not affect the expression of α-SMA, fibronectin, and Smad2/3 phosphorylation, whereas I. japonica significantly inhibited them but with cytotoxicity. The results indicate that the synergistic application of P. ginseng and I. japonica enhances the anti-fibrotic properties in pulmonary fibroblasts and concurrently diminishes toxicity. Therefore, ISE081 has the potential as a prevention and treatment herbal medicine for PF.


Subject(s)
Inula , Panax , Pulmonary Fibrosis , Humans , Inula/metabolism , Fibronectins/genetics , Fibronectins/metabolism , Panax/metabolism , Fibrosis , Pulmonary Fibrosis/metabolism , Fibroblasts , Transforming Growth Factor beta1/metabolism , RNA, Messenger/metabolism
2.
Curr Issues Mol Biol ; 45(12): 9926-9942, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38132466

ABSTRACT

Microglia-induced inflammatory signaling and neuronal oxidative stress are mutually reinforcing processes central to the pathogenesis of neurodegenerative diseases. Recent studies have shown that extracts of dried Pheretima aspergillum (Lumbricus) can inhibit tissue fibrosis, mitochondrial damage, and asthma. However, the effects of Lumbricus extracts on neuroinflammation and neuronal damage have not been previously studied. Therefore, to evaluate the therapeutic potential of Lumbricus extract for neurodegenerative diseases, the current study assessed the extract's anti-inflammatory and antioxidant activities in BV2 microglial cultures stimulated with lipopolysaccharide (LPS) along with its neuroprotective efficacy in mouse hippocampal HT22 cell cultures treated with excess glutamate. Lumbricus extract dose-dependently inhibited the LPS-induced production of multiple proinflammatory cytokines (tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß) and reversed the upregulation of proinflammatory enzymes (inducible nitric oxide synthase and cyclooxygenase-2). Lumbricus also activated the antioxidative nuclear factor erythroid 2-relayed factor 2/heme oxygenase-1 pathway and inhibited LPS-induced activation of the nuclear factor-κB/mitogen-activated protein kinases/NOD-like receptor family pyrin domain containing 3 inflammatory pathway. In addition, Lumbricus extract suppressed the glutamate-induced necrotic and apoptotic death of HT22 cells, effects associated with upregulated expression of antiapoptotic proteins, downregulation of pro-apoptotic proteins, and reduced accumulation of reactive oxygen species. Chromatography revealed that the Lumbricus extract contained uracil, hypoxanthine, uridine, xanthine, adenosine, inosine, and guanosine. Its effects against microglial activation and excitotoxic neuronal death reported herein support the therapeutic potential of Lumbricus for neurodegenerative diseases.

3.
Front Microbiol ; 14: 1224085, 2023.
Article in English | MEDLINE | ID: mdl-37771707

ABSTRACT

Multidrug-resistant bacteria such as Staphylococcus aureus constitute a global health problem. Gram-positive S. aureus secretes various toxins associated with its pathogenesis, and its biofilm formation plays an important role in antibiotic tolerance and virulence. Hence, we investigated if the metabolites of vitamin A1 might diminish S. aureus biofilm formation and toxin production. Of the three retinoic acids examined, 13-cis-retinoic acid at 10 µg/mL significantly decreased S. aureus biofilm formation without affecting its planktonic cell growth (MIC >400 µg/mL) and also inhibited biofilm formation by Staphylococcus epidermidis (MIC >400 µg/mL), but less affected biofilm formation by a uropathogenic Escherichia coli strain, a Vibrio strain, or a fungal Candida strain. Notably, 13-cis-retinoic acid and all-trans-retinoic acid significantly inhibited the hemolytic activity and staphyloxanthin production by S. aureus. Furthermore, transcriptional analysis disclosed that 13-cis-retinoic acid repressed the expressions of virulence- and biofilm-related genes, such as the two-component arlRS system, α-hemolysin hla, nuclease (nuc1 and nuc2), and psmα (phenol soluble modulins α) in S. aureus. In addition, plant and nematode toxicity assays showed that 13-cis-retinoic acid was only mildly toxic at concentrations many folds higher than its effective antibiofilm concentrations. These findings suggest that metabolites of vitamin A1, particularly 13-cis-retinoic acid, might be useful for suppressing biofilm formation and the virulence characteristics of S. aureus.

4.
Virus Res ; 335: 199199, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37582473

ABSTRACT

Thuja orientalis Folium (TOF) has been prescribed traditionally as an expectorant for inflammatory airway disease. In this study, we evaluated the anti-influenza A virus (IAV) activity of TOF by detecting GFP expressed by influenza A virus (A/PR/8/34-GFP) infection. The fluorescence microscopy and fluorescence-activated cell sorting analysis showed that TOF potently inhibited IAV infection, dose-dependently. Consistently, immunofluorescence and Q-PCR analysis results confirmed TOF significantly represses IAV protein and RNA expression. TOF inhibited IAV infection at the binding and entry step upon viral infection and interferes with HA protein. Further, TOF exhibited a virucidal effect and inhibited the neuraminidase activity of IAV. Additionally, TOF prevented the cytopathic effect caused by H1N1 and H3N2 IAV infection. Amentoflavone among the constituents in TOF exerted the strongest anti-IAV effect. Myricetin, quercetin, and quercitrin also inhibited IAV infection. However, the potent anti-IAV effect of TOF may be related to the synergistic effect of constituents, not by a single specific compound. Our results suggest TOF exhibits a significant inhibitory effect against IAV infection at multi-stages via the blockage of viral attachment and entry, inhibition of neuraminidase, and induction of virucidal effects.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Thuja , Humans , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Thuja/metabolism , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Neuraminidase/genetics
5.
Biomed Pharmacother ; 164: 114951, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37267636

ABSTRACT

Lilii Bulbus, the bulb of tiger lily, has anti-oxidant and anti-tumorigenic properties. However, the effects of Lilii Bulbus on learning, memory, and hippocampal neurogenesis remain unknown. This study investigated whether water extract of Lilii Bulbus (WELB) affects memory ability and hippocampal neurogenesis. Behavioral analyses (Morris water maze and passive avoidance test), immunohistochemistry, cell proliferation assay, and immunoblot analysis were performed. WELB (50 and 100 mg/kg; for 14 days) enhanced memory retention and spatial memory in normal mice as well as in scopolamine-treated mice with memory deficits. Furthermore, the administration of WELB significantly increased the number of proliferating cells and surviving newborn cells in the dentate gyrus of the hippocampus in normal mice. We found that WELB has a pro-neurogenic effect by increasing the activation of brain-derived neurotrophic factor (BDNF)/cAMP response element-binding protein (CREB) and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) in the hippocampus. Moreover, we confirmed that WELB (100 and 200 µg/ml) significantly increased NE-4 C and primary embryonic NSCs proliferation. Inhibition/knockdown of MEK/ERK blocked WELB-induced MEK/ERK phosphorylation and NSCs proliferation. Hence, MEK/ERK activation was required in WELB-induced NSCs proliferation. Our study demonstrates the first evidence for WELB promoting hippocampal neurogenesis and memory; pro-neurogenic activity may enhance brain plasticity, with implications for treating neurodegenerative diseases.


Subject(s)
Extracellular Signal-Regulated MAP Kinases , Hippocampus , Mice , Animals , Extracellular Signal-Regulated MAP Kinases/metabolism , Neurogenesis , Spatial Memory , Mitogen-Activated Protein Kinase Kinases/metabolism , Maze Learning
6.
Molecules ; 28(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37175371

ABSTRACT

Isatidis folium or Isatis tinctoria L. is a flowering plant of the Brassicaceae family, commonly known as woad, with an ancient and well-documented history as an indigo dye and medicinal plant. This study aimed to evaluate the anti-atopic dermatitis (AD) effects of Isatidis folium water extract (WIF) using a 2,4-dinitrochlorobenzene (DNCB)-induced AD-like mouse model and to investigate the underlying mechanism using tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ)-activated HaCaT cells. Oral administration of WIF reduced spleen weight, decreased serum IgE and TNF-α levels, reduced epidermal and dermal thickness, and inhibited eosinophil and mast cell recruitment to the dermis compared to DNCB-induced control groups. Furthermore, oral WIF administration suppressed extracellular signal-regulated kinase and p38 mitogen-activated protein kinase protein expression levels, p65 translocation from the cytoplasm to the nucleus, and mRNA expression of TNF-α, IFN-γ, interleukin (IL)-6, and IL-13 in skin lesion tissues. In HaCaT cells, WIF suppressed the production of regulated upon activation, normal T cell expressed and secreted (RANTES), thymus and activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC), MCP-1, and MIP-3a, which are inflammatory cytokines and chemokines related to AD, and inhibited the mRNA expression of RANTES, TARC, and MDC in TNF-α/IFN-γ-stimulated HaCaT cells. Overall, the results revealed that WIF ameliorated AD-like skin inflammation by suppressing proinflammatory cytokine and chemokine production via nuclear factor-κB pathway inhibition, suggesting WIF as a potential candidate for AD treatment.


Subject(s)
Dermatitis, Atopic , Tumor Necrosis Factor-alpha , Animals , Mice , Humans , Tumor Necrosis Factor-alpha/metabolism , Dinitrochlorobenzene/adverse effects , Dinitrochlorobenzene/metabolism , Keratinocytes , Interferon-gamma/metabolism , Water/metabolism , HaCaT Cells , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Cytokines/metabolism , NF-kappa B/metabolism , Chemokines/metabolism , RNA, Messenger/genetics
7.
Int J Mol Sci ; 23(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36499298

ABSTRACT

We determined the effects of two extracts from Acer palmatum Thumb. leaves (hot water extract KIOM-2015EW and 25% ethanol extract KIOM-2015EE) in a benzalkonium chloride (BAC)-induced dry eye mouse model. Dry eye was induced by 0.2% BAC for 2 weeks, followed by treatment three times (eye drop) or once (oral administration) daily with KIOM-2015E for 2 weeks. Treatment with both KIOM-2015EE and KIOM-2015EW resulted in a marked increase in tear volume production for the 4 days of treatment. The Lissamine Green staining score, TUNEL-positive cells, and inflammatory index were significantly decreased after 2 weeks. Topical KIOM-2015EE administration exhibited a greater improvement in decreasing the ocular surface staining scores, inflammation, dead cells, and increasing tear production in a dose-dependent manner compared with the other groups. Furthermore, KIOM-2015E significantly reduced the phosphorylation of NF-κB, which was activated in the BAC-treated cornea. Topical administration was much more effective than oral administration for KIOM-2015E and KIOM-2015EE was more effective than KIOM-2015EW. Application of KIOM-2015E resulted in clinical improvement, inhibited the inflammatory response, and alleviated signs of dry eye. These results indicate that KIOM-2015E has potential as a therapeutic agent for the clinical treatment of dry eye.


Subject(s)
Acer , Dry Eye Syndromes , Mice , Animals , Benzalkonium Compounds , Mice, Inbred BALB C , Dry Eye Syndromes/chemically induced , Dry Eye Syndromes/drug therapy , Disease Models, Animal , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Tears
8.
Nutrients ; 14(24)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36558424

ABSTRACT

The important factors in the pathogenesis of neurodegenerative disorders include oxidative stress and neuron-glia system inflammation. Vignae Radiatae Semen (VRS) exhibits antihypertensive, anticancer, anti-melanogenesis, hepatoprotective, and immunomodulatory properties. However, the neuroprotective effects and anti-neuroinflammatory activities of VRS ethanol extract (VRSE) remained unknown. Thus, this study aimed to investigate the neuroprotective and anti-inflammatory activities of VRSE against hydrogen peroxide (H2O2)-induced neuronal cell death in mouse hippocampal HT22 cells and lipopolysaccharide (LPS)-stimulated BV2 microglial activation, respectively. This study revealed that VRSE pretreatment had significantly prevented H2O2-induced neuronal cell death and attenuated reactive oxygen species generations in HT22 cells. Additionally, VRSE attenuated the apoptosis protein expression while increasing the anti-apoptotic protein expression. Further, VRSE showed significant inhibitory effects on LPS-induced pro-inflammatory cytokines in BV2 microglia. Moreover, VRSE pretreatment significantly activated the tropomyosin-related kinase receptor B/cAMP response element-binding protein, brain-derived neurotrophic factor and nuclear factor erythroid 2-related factor 2, and heme oxygenase-1 signaling pathways in HT22 cells exposed to H2O2 and inhibited the activation of the mitogen-activated protein kinase and nuclear factor-κB mechanism in BV2 cells stimulated with LPS. Therefore, VRSE exerts therapeutic potential against neurodegenerative diseases related to oxidative stress and pathological inflammatory responses.


Subject(s)
Microglia , Neuroprotective Agents , Plant Extracts , Animals , Mice , Cell Line , Hydrogen Peroxide/metabolism , Lipopolysaccharides , Neurons/metabolism , Neuroprotective Agents/pharmacology , NF-kappa B/metabolism , Vigna/chemistry , Plant Extracts/pharmacology
9.
Curr Issues Mol Biol ; 44(12): 5902-5914, 2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36547063

ABSTRACT

Arecae Pericarpium has been found to exert anti-migraine, antidepressant, and antioxidative effects. However, the mechanisms involved are unclear. This study explored the possibility that Arecae Pericarpium ethanol extract (APE) exerts neuroprotective effects against oxidative stress-induced neuronal cell death. Since glutamate excitotoxicity has been implicated in the pathogenesis and development of several neurodegenerative disorders, we explored the mechanisms of action of APE on oxidative stress-induced by glutamate. Our results revealed that pretreatment with APE prevents glutamate-induced HT22 cell death. APE also reduced both the levels of intracellular reactive oxygen species and the apoptosis of cells, while maintaining glutamate-induced mitochondrial membrane potentials. Western blotting showed that pretreatment with APE facilitates the upregulation of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) phosphorylation; the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf-2); and the production of antioxidant enzymes, including catalase, glutamate-cysteine ligase catalytic subunits, NAD(P)H quinone oxidoreductase 1, and heme oxygenase (HO)-1. The administration of LY294002, a PI3K/Akt inhibitor, attenuated the neuroprotective effects of APE on oxidative stress-induced neuronal cell damage. This allowed us to infer that the protective effects of APE on oxidative damage to cells can be attributed to the PI3K/Akt-mediated Nrf-2/HO-1 signaling pathway.

10.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36361900

ABSTRACT

Isoquercitrin (IQC) is a component abundantly present in many plants and is known to have an anti-viral effect against various viruses. In this study, we demonstrate that IQC exhibits strong anti-influenza A virus infection, and its effect is closely related to the suppression of hemagglutinin (HA) and neuraminidase (NA) activities. We used green fluorescent protein-tagged Influenza A/PR/8/34 (H1N1), A/PR/8/34 (H1N1), and HBPV-VR-32 (H3N2) to evaluate the anti-IAV effect of IQC. The fluorescence microscopy and fluorescence-activated cell sorting analysis showed that IQC significantly decreases the levels of GFP expressed by IAV infection, dose-dependently. Consistent with that, IQC inhibited cytopathic effects by H1N1 or H3N2 IAV infection. Immunofluorescence analysis confirmed that IQC represses the IAV protein expression. Time-of-addition assay showed that IQC inhibits viral attachment and entry and exerts a strong virucidal effect during IAV infection. Hemagglutination assay confirmed that IQC affects IAV HA. Further, IQC potently reduced the NA activities of H1N1 and H3N2 IAV. Collectively, IQC prevents IAV infection at multi-stages via virucidal effects, inhibiting attachment, entry and viral release. Our results indicate that IQC could be developed as a potent antiviral drug to protect against influenza viral infection.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Humans , Neuraminidase/metabolism , Hemagglutinins/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Influenza A Virus, H3N2 Subtype , Influenza, Human/drug therapy , Influenza A virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/metabolism
11.
Int J Mol Sci ; 23(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36232743

ABSTRACT

Glutamate-induced neural toxicity in autophagic neuron death is partially mediated by increased oxidative stress. Therefore, reducing oxidative stress in the brain is critical for treating or preventing neurodegenerative diseases. Selaginella tamariscina is a traditional medicinal plant for treating gastrointestinal bleeding, hematuria, leucorrhea, inflammation, chronic hepatitis, gout, and hyperuricemia. We investigate the inhibitory effects of Selaginella tamariscina ethanol extract (STE) on neurotoxicity and autophagic cell death in glutamate-exposed HT22 mouse hippocampal cells. STE significantly increased cell viability and mitochondrial membrane potential and decreased the expression of reactive oxygen species, lactate dehydrogenase release, and cell apoptosis in glutamate-exposed HT22 cells. In addition, while glutamate induced the excessive activation of mitophagy, STE attenuated glutamate-induced light chain (LC) 3 II and Beclin-1 expression and increased p62 expression. Furthermore, STE strongly enhanced the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) phosphorylation activation. STE strongly inhibited glutamate-induced autophagy by activating the PI3K/Akt/mTOR signaling pathway. In contrast, the addition of LY294002, a PI3K/Akt inhibitor, remarkably suppressed cell viability and p-Akt and p62 expression, while markedly increasing the expression of LC3 II and Beclin-1. Our findings indicate that autophagy inhibition by activating PI3K/Akt/mTOR phosphorylation levels could be responsible for the neuroprotective effects of STE on glutamate neuronal damage.


Subject(s)
Autophagic Cell Death , Neuroprotective Agents , Selaginellaceae , Animals , Autophagy , Beclin-1/pharmacology , Ethanol/pharmacology , Glutamic Acid/toxicity , Lactate Dehydrogenases/metabolism , Mammals/metabolism , Mice , Neuroprotective Agents/pharmacology , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Selaginellaceae/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
12.
Front Pharmacol ; 13: 899181, 2022.
Article in English | MEDLINE | ID: mdl-35847047

ABSTRACT

Broccoli (Brassica oleracea L. var. Italica) leaves are a byproduct of broccoli and could be used as a food source. The study aimed to evaluate the effect of broccoli leaves on influenza A virus (IAV) infection. We investigated the effect of ethanol extract of Broccoli leaves (EBL) on IAV infection using green fluorescent protein (GFP)-tagged Influenza A/PR/8/34 virus (PR8-GFP IAV). When EBL and PR8-GFP IAV were cotreated to RAW 264.7 cells, the fluorescence microscopy and fluorescence-activated cell sorting (FACS) analysis showed that EBL significantly reduced the levels of GFP expression by influenza viral infection dose-dependently. Immunofluorescence (IF) analysis confirmed that EBL decreased the expression of IAV proteins. EBL exhibited a strong inhibitory effect of IAV binding on the cells and moderate virucidal impact. Consistently, EBL potently suppressed the hemagglutination by IAV infection. These results indicate that EBL prevents IAV attachment via the inhibition of HA upon viral infection. Finally, EBL as an HA inhibitor of IAV could be used as the natural antiviral source to protect against influenza viral infection.

13.
Chin Med ; 17(1): 66, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35676724

ABSTRACT

BACKGROUND: Isatis tinctoria L (PLG) is a medicinal herb from the roots of Isatis indigotica Fort (Family Cruciferae). Previous studies have shown that PLG has anti-inflammatory and therapeutic effects against conditions such as acute and chronic hepatitis, various respiratory inflammations, and cancer. The purpose of this study was to define the pharmacological effects of PLG on inflammatory reactions and skin hyperkeratosis, which are the main symptoms of atopic dermatitis (AD), in vivo and in vitro. METHODS: For the AD in vivo experiment, 2,4-dinitrochlorobenzene (DNCB) induction and oral administration of PLG were performed on male BALB/c mice for four weeks. For in vitro experiments, keratinocytes were activated using TNF-α/IFN-γ in cultured human keratinocyte (HaCaT) cells. PLG inhibited inflammatory chemokine production and blocked the nuclear translocation of NF-κB p65 in activated keratinocytes. RESULTS: As a result of oral administration of PLG, dermis and epidermis thickening, as well as eosinophil and mast cell infiltration, were attenuated in AD skin lesions. In addition, the levels of immunoglobulin E (IgE), pro-inflammatory cytokines, and the MAPK/NF-κB signaling pathway were decreased in serum and dorsal skin tissues. Furthermore, PLG inhibited inflammatory chemokine production and blocked the nuclear translocation of NF-κB p65 in activated keratinocytes. In addition, epigoitrin and adenosine, the standard compounds of PLG, were identified as candidate AD compounds. CONCLUSIONS: These results indicate that PLG is a potent therapeutic agent for attenuating symptoms of AD.

14.
Heliyon ; 8(2): e08866, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35198755

ABSTRACT

Many medicinal plants such as a Panax ginseng and Morus alba (mulberry tree) have been widely used as depigmenting agents in Asia. To maximize their synergistic effects on melanogenesis, new herbal decoctions were created by mixing Ginseng Radix Alba (GR) and Mori Radicis Cortex (MC) at a ratio of 3:2 which called GMC decoction. A decoction of GR and Mori Ramulus (MR), which called GMR, was also formulated in order to compare the anti-melanogenic capacity. Combined decoctions, GMC and GMR, significantly decreased mushroom tyrosinase activity in vitro; however, single extracts, including MC and MR, showed weaker inhibitory activity. Melanin content assay and Fontana-Masson staining confirmed that two decoctions showed stronger inhibitory effects on the forskolin-induced melanin level in B16 cells, without cytotoxicity. Our findings suggest that ginseng in combination with mulberry tree enhances the anti-melanogenic effect in vitro.

15.
Int J Mol Sci ; 23(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35008979

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin disease associated with a type 2 T helper cell (Th2) immune response. The IndigoPulverata Levis extract (CHD) is used in traditional Southeast Asian medicine; however, its beneficial effects on AD remain uninvestigated. Therefore, we investigated the therapeutic effects of CHD in 2,4-dinitrochlorobenzene (DNCB)-induced BALB/c mice and tumor necrosis factor (TNF)-α- and interferon gamma (IFN)-γ-stimulated HaCaT cells. We evaluated immune cell infiltration, skin thickness, and the serum IgE and TNF-α levels in DNCB-induced AD mice. Moreover, we measured the expression levels of pro-inflammatory cytokines, mitogen-activated protein kinase (MAPK), and the nuclear factor-kappa B (NF-κB) in the mice dorsal skin. We also studied the effect of CHD on the translocation of NF-κB p65 and inflammatory chemokines in HaCaT cells. Our in vivo results revealed that CHD reduced the dermis and epidermis thicknesses and inhibited immune cell infiltration. Furthermore, it suppressed the proinflammatory cytokine expression and MAPK and NF-κB phosphorylations in the skin tissue and decreased serum IgE and TNF-α levels. In vitro results indicated that CHD downregulated inflammatory chemokines and blocked NF-κB p65 translocation. Thus, we deduced that CHD is a potential drug candidate for AD treatment.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Dermatitis, Atopic/drug therapy , Dermatitis/drug therapy , Plant Extracts/pharmacology , Polygonaceae/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Biomarkers , Biopsy , Cell Line, Tumor , Cytokines/metabolism , Dermatitis/etiology , Dermatitis/pathology , Dermatitis, Atopic/etiology , Dermatitis, Atopic/pathology , Disease Models, Animal , Fluorescent Antibody Technique , Humans , Immunoglobulin E/immunology , Immunohistochemistry , Inflammation Mediators/metabolism , Mice , Plant Extracts/chemistry , Skin/drug effects , Skin/metabolism , Skin/pathology
16.
Biomed Pharmacother ; 146: 112581, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34965505

ABSTRACT

Epimedium koreanum Nakai (EKN) is a popular plant in Korean and Chinese medicine for treating a variety of ailments. The aqueous extract of EKN has a significant inhibitory impact on influenza A virus (IAV) infection by directly blocking viral attachment and having a virucidal effect, according to this study. Using fluorescent microscopy and fluorescence-activated cell sorting (FACS) with a green fluorescent protein (GFP)-tagged Influenza A/PR/8/34 virus, we examined the effect of EKN on viral infection. By viral infection, EKN strongly suppresses GFP expression, and at a dosage of 100 µg/mL, EKN decreased GFP expression by up to 90% of the untreated infected control. Immunofluorescence and Western blot analyses against influenza viral proteins revealed that EKN decreased influenza viral protein expression in a dose-dependent manner. EKN inhibited the H1N1 influenza virus's hemagglutinin (HA) and neuraminidase (NA), preventing viral attachment to cells. Furthermore, EKN had a virucidal impact and inhibited the cytopathic effects of H1N1, H3N2 and influenza B virus infection. Finally, our findings show that EKN has the potential to be developed as a natural viral inhibitor against influenza virus infection.


Subject(s)
Alphainfluenzavirus/drug effects , Antiviral Agents/pharmacology , Epimedium , Plant Extracts/pharmacology , Animals , Hemagglutinins/drug effects , Humans , Mice , Neuraminidase/drug effects , Viral Proteins/drug effects , Virus Attachment/drug effects
17.
Nutrients ; 13(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34835946

ABSTRACT

Oxidative stress-mediated neuronal damage is associated with the pathogenesis and development of neurodegenerative diseases. Chrysanthemum indicum has antioxidant properties. However, the neuroprotective effects and the cellular mechanism of C. indicum ethanol extract (CIE) against oxidative damage in hippocampal neuronal cells have not been clearly elucidated. Therefore, this study investigated whether CIE has protective effects against hydrogen peroxide (H2O2)-induced oxidative toxicity in HT22 cells. CIE pretreatment significantly improved neuronal cell viability. Moreover, the formation of intracellular reactive oxygen species and apoptotic bodies, and mitochondrial depolarization were significantly reduced in HT22 cells with H2O2-induced oxidative toxicity. Furthermore, CIE increased the phosphorylation of tropomyosin-related kinase receptor B (TrkB), protein kinase B (Akt), cAMP response element-binding protein, the expression of brain-derived neurotrophic factor, antioxidant enzymes, and the nuclear translocation of nuclear factor erythroid 2-related factor 2 by activating the TrkB/Akt signaling pathway. In contrast, the addition of K252a, a TrkB inhibitor, or MK-2206, an Akt-selective inhibitor, reduced the neuroprotective and antioxidant effects of CIE. Taken together; CIE exhibits neuroprotective and antioxidant effects against oxidative damage. Therefore, it can be a potential agent for treating oxidative stress-related neurodegenerative diseases.


Subject(s)
Chrysanthemum , Neuroprotective Agents/pharmacology , Neurotoxicity Syndromes/prevention & control , Plant Extracts/pharmacology , Signal Transduction/drug effects , Antioxidants , Cell Line , Cell Survival/drug effects , Ethanol/pharmacology , Hippocampus/cytology , Humans , Hydrogen Peroxide/adverse effects , Membrane Glycoproteins/metabolism , Neurons/cytology , Neurotoxicity Syndromes/etiology , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Receptor, trkB/metabolism
18.
Antioxidants (Basel) ; 10(9)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34573019

ABSTRACT

This study aimed to determine the anti-inflammatory and hepatoprotective effects of Lysimachiae Herba ethanolic extract (LHE) in lipopolysaccharide (LPS)-stimulated macrophages and in a LPS/D-galactosamine (GalN)-induced acute hepatitis mouse model. Then, the production of inflammatory mediators and the activation of related pathways in macrophages were explored. Finally, we assessed the serum aminotransferase levels and the expression of inflammatory/antioxidant molecules in liver tissues in mice. Results revealed that LHE treatment significantly inhibited the production of inflammatory mediators in LPS-stimulated RAW 264.7 macrophages. Molecular data showed that LHE remarkably increased the activities of the antioxidant pathway and inhibited the phosphorylation of mitogen-activated protein kinase as well as the transcriptional activity of nuclear factor-κB induced by LPS. Furthermore, it prevented acute liver damage caused by LPS/D-GalN-induced hepatitis by inhibiting aminotransferase levels and histopathological changes in mice. Moreover, treatment with LHE significantly inhibited the activation of inflammatory pathways and increased the expression of antioxidant molecules including heme oxygenase-1/Nuclear factor erythroid 2-related factor 2. In conclusion, LHE has potent anti-inflammatory and hepatoprotective effects in LPS-stimulated macrophages and the LPS/D-GalN-induced acute hepatitis mouse model. Thus, it can be a treatment option for inflammation, hepatitis, and liver injury.

19.
Nutrients ; 13(8)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34445058

ABSTRACT

Forsythia Fruit (FF), the fruit of Forsythia suspensa, has been used since ancient times as an herbal medication in East Asia to treat inflammation, gonorrhea, and pharyngitis. However, the efficacy of FF against liver damage due to inflammation has not been studied. Here, we explored the protective effects of FF in a mouse hepatitis model induced by lipopolysaccharide (LPS)/D-galactosamine (GalN) treatment. We measured inflammatory cytokine and aminotransferase levels in mouse blood and analyzed the effects of FF on inflammatory gene and protein expression levels in liver tissue. Our results show that FF treatment effectively lowers inflammatory cytokine and serum aminotransferase levels in mice and inhibits the expression of hepatic cytokine mRNA and inflammatory proteins. Furthermore, treatment with FF activated the antioxidant pathway HO-1/Nrf-2 and suppressed severe histological alteration in the livers of LPS/D-GalN-treated mice. Further investigation of the effects of FF on inflammatory reactions in LPS-stimulated macrophages showed that pretreatment with FF inhibits inflammatory mediator secretion and activation of inflammatory mechanisms both in a mouse macrophage RAW 264.7 cells and in primary peritoneal macrophages. These results show that FF has potential worth as a candidate for the treatment of fulminant inflammatory reactions and subsequent liver injury.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Forsythia , Fruit , Liver/drug effects , Macrophages/drug effects , Massive Hepatic Necrosis/prevention & control , Plant Extracts/pharmacology , Animals , Anti-Inflammatory Agents/isolation & purification , Antioxidants/isolation & purification , Antioxidants/pharmacology , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Forsythia/chemistry , Fruit/chemistry , Galactosamine , Inflammation Mediators/metabolism , Lipopolysaccharides , Liver/metabolism , Liver/pathology , Macrophages/metabolism , Male , Massive Hepatic Necrosis/chemically induced , Massive Hepatic Necrosis/metabolism , Massive Hepatic Necrosis/pathology , Mice , Mice, Inbred ICR , Oxidative Stress/drug effects , Plant Extracts/isolation & purification , RAW 264.7 Cells
20.
Viruses ; 13(4)2021 03 25.
Article in English | MEDLINE | ID: mdl-33806073

ABSTRACT

Sargassum fusiforme, a plant used as a medicine and food, is regarded as a marine vegetable and health supplement to improve life expectancy. Here, we demonstrate that S. fusiforme extract (SFE) has antiviral effects against respiratory syncytial virus (RSV) in vitro and in vivo mouse model. Treatment of HEp2 cells with a non-cytotoxic concentration of SFE significantly reduced RSV replication, RSV-induced cell death, RSV gene transcription, RSV protein synthesis, and syncytium formation. Moreover, oral inoculation of SFE significantly improved RSV clearance from the lungs of BALB/c mice. Interestingly, the phenolic compounds eicosane, docosane, and tetracosane were identified as active components of SFE. Treatment with a non-cytotoxic concentration of these three components elicited similar antiviral effects against RSV infection as SFE in vitro. Together, these results suggest that SFE and its potential components are a promising natural antiviral agent candidate against RSV infection.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/analysis , Biological Products/pharmacology , Respiratory Syncytial Virus, Human/drug effects , Sargassum/chemistry , Virus Replication/drug effects , Animals , Antiviral Agents/analysis , Antiviral Agents/therapeutic use , Cell Line , Disease Models, Animal , Humans , Lung/drug effects , Lung/virology , Mice , Mice, Inbred BALB C , Phenols/pharmacology , Respiratory Syncytial Virus Infections/drug therapy , Viral Load/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...