Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biochim Biophys Sin (Shanghai) ; 54(2): 199-208, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35130614

ABSTRACT

Methyltransferase-like 3 (Mettl3) is a component of methyltransferase complex that mediates mA modification of RNAs, and participates in multiple biological processes. However, the role of Mettl3 in cardiac electrophysiology remains unknown. This study aims to explore the ventricular arrhythmia susceptibility of Mettl3 mice and the underlying mechanisms. Mice were anesthetized with 2% avertin (0.1 mL/ body weight) for echocardiography and programmed electrical pacing. Whole-cell patch clamp technique was used to examine the electrophysiological property of cardiomyocytes. The expression of Cav1.2 was determined by qRT-PCR and western blot analysis. The mA medication of mRNA was examined by MeRIP-Seq and MeRIP-qPCR. No differences are found in the morphology and function of the hearts between Mettl3 mice and wild-type (WT) controls. The QT and QTc intervals of Mettl3 mice are significantly longer. High-frequency electrical stimulation showed that heterozygous knockout of Mettl3 increases ventricular arrhythmia susceptibility. The whole-cell patch-clamp recordings showed that the APD is prolonged in Mettl3 ventricular myocytes and more EADs were observed. The density of is substantially increased in ventricular myocytes of Mettl3 mice. The pore-forming subunit of L-type calcium channel Cav1.2 is upregulated in Mettl3 mice, while the mRNA of its coding gene does not change. MeRIP-Seq and MeRIP-qPCR showed that the mA methylation of mRNA is decreased in cultured Mettl3-knockdown cardiomyocytes and Mettl3 hearts. Collectively, deficiency of Mettl3 increases ventricular arrhythmia susceptibility due to the upregulation of Cav1.2 by reducing mA modification onmRNA in mice. This study highlights the role of mA modification in the regulation of cardiac electrophysiology.


Subject(s)
Arrhythmias, Cardiac , Calcium Channels, L-Type/metabolism , Myocytes, Cardiac , Animals , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , Myocytes, Cardiac/metabolism , Transcriptional Activation , Up-Regulation
2.
Heart Rhythm ; 18(10): 1780-1789, 2021 10.
Article in English | MEDLINE | ID: mdl-34182171

ABSTRACT

BACKGROUND: The normal cardiac rhythm is generated in the sinoatrial node (SAN). Changes in ionic currents of the SAN may cause sinus arrhythmia. CXXC finger protein 1 (Cfp1) is an epigenetic regulator that is involved in transcriptional regulation of multiple genes. OBJECTIVE: The purpose of this study was to explore whether Cfp1 controls SAN function through regulation of ion channel-related genes. METHODS: Electrophysiological study, patch clamp recording, reverse transcriptase polymerase chain reaction, optical mapping, chromatin immunoprecipitation, and immunofluorescence staining were performed to evaluate the function of SAN and underlying mechanism on Cfp1 heterozygous knockout (Cfp1+/-) mice. RESULTS: Heart rate was slower slightly and SAN recovery time was longer in Cfp1+/- mice than controls. Whole-cell patch-clamp recording showed that the firing rate of action potentials was reduced in Cfp1+/- mice. The density of If current was reduced by 66% in SAN cells of Cfp1+/- mice but the densities of ICa, ICa-L, and ICa-T were not changed. The hyperpolarization-activated cyclic nucleotide-gated 4 (HCN4) mRNA level in SAN tissue of Cfp1+/- mice was reduced. The HCN4 protein was significantly decreased in SAN cells and tissues after heterozygous deletion of Cfp1. Chromatin immunoprecipitation assay on cultured HL-1 cells demonstrated that Cfp1 was enriched in the promoter regions of HCN4. Knockdown of Cfp1 reduced H3K4 trimethylation, H3K9 acetylation, and H3K27 acetylation of HCN4 promoter region. CONCLUSION: Deficiency of Cfp1 leads to small changes in heart rate by moderate epigenetic modification alterations and significant protein downregulation of HCN4 ion channels in mice.


Subject(s)
Arrhythmias, Cardiac/genetics , Epigenesis, Genetic/genetics , Gene Expression Regulation , Heart Rate/physiology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Myocardium/metabolism , Trans-Activators/genetics , Action Potentials/physiology , Animals , Arrhythmias, Cardiac/pathology , Arrhythmias, Cardiac/physiopathology , Disease Models, Animal , Down-Regulation , Female , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/biosynthesis , Male , Mice , Mice, Inbred C57BL , Myocardium/pathology , Patch-Clamp Techniques , Trans-Activators/biosynthesis , Trans-Activators/deficiency
3.
Acta Pharmacol Sin ; 42(11): 1780-1789, 2021 11.
Article in English | MEDLINE | ID: mdl-33589793

ABSTRACT

Interleukin-17 (IL-17), also called IL-17A, is an important regulator of cardiac diseases, but its role in calcium-related cardiac dysfunction remains to be explored. Thus, we investigated the influence of IL-17 on calcium handling process and its contribution to the development of heart failure. Mice were subjected to transaortic constriction (TAC) to induce heart failure. In these mice, the levels of IL-17 in the plasma and cardiac tissue were significantly increased compared with the sham group. In 77 heart failure patients, the plasma level of IL-17 was significantly higher than 49 non-failing subjects, and was negatively correlated with cardiac ejection fraction and fractional shortening. In IL-17 knockout mice, the shortening of isolated ventricular myocytes was increased compared with that in wild-type mice, which was accompanied by significantly increased amplitude of calcium transient and the upregulation of SERCA2a and Cav1.2. In cultured neonatal cardiac myocytes, treatment of with IL-17 (0.1, 1 ng/mL) concentration-dependently suppressed the amplitude of calcium transient and reduced the expression of SERCA2a and Cav1.2. Furthermore, IL-17 treatment increased the expression of the NF-κB subunits p50 and p65, whereas knockdown of p50 reversed the inhibitory effects of IL-17 on SERCA2a and Cav1.2 expression. In mice with TAC-induced mouse heart, IL-17 knockout restored the expression of SERCA2a and Cav1.2, increased the amplitude of calcium transient and cell shortening, and in turn improved cardiac function. In addition, IL-17 knockout attenuated cardiac hypertrophy with inhibition of calcium-related signaling pathway. In conclusion, upregulation of IL-17 impairs cardiac function through NF-κB-mediated disturbance of calcium handling and cardiac remodeling. Inhibition of IL-17 represents a potential therapeutic strategy for the treatment of heart failure.


Subject(s)
Calcium Channels, L-Type/biosynthesis , Heart Failure/metabolism , Interleukin-17/biosynthesis , NF-kappa B/biosynthesis , Sarcoplasmic Reticulum Calcium-Transporting ATPases/biosynthesis , Up-Regulation/physiology , Animals , Animals, Newborn , Calcium Channels, L-Type/genetics , Cell Line , Cells, Cultured , Gene Expression , Heart Failure/genetics , Heart Failure/pathology , Humans , Interleukin-17/deficiency , Interleukin-17/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...