Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 316
Filter
Add more filters











Publication year range
1.
J Hazard Mater ; 480: 135875, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39303610

ABSTRACT

Selenium-enhanced arsenic uptake by As-hyperaccumulators Pteris vittata and Pteris cretica is known, but how it impacts antimony (Sb) uptake and associated mechanisms are unclear. Here, we investigated the effects of 2.5 µM selenate (Se2.5) on Sb uptake by two plants after growing for 10 days under hydroponics containing 10 or 50 µM antimonate (SbV) (Sb10 or Sb50). Both plants were efficient in taking up SbV, which was reduced to SbIII (17-40 %) and mainly accumulated in the roots (86-97 %). The addition of Se increased the Sb contents by 78-97 and 29-33 % to 242-1358 and 132-697 mg kg-1 in P. vittata and P. cretica roots. Compared with the Sb10 and Sb50 treatments, addition of Se increased the SbV reduction, with more increase in P. vittata than P. cretica roots (181-273 % vs. 17-29 %). Enhanced GSH-GSSG cycle mediated by glutathione peroxidase (GPX) and glutathione reductase (GR) may play an important role in SbV reduction in the roots. Compared with the Sb treatments, addition of Se increased the GPX and GR activity by 71-97 and 2-50 % in P. vittata roots, and 59-153 and 22-63 % in P. cretica roots. Besides, Se upregulated the expression of arsenate reductases PvHAC1 and PvACR2 in P. vittata roots by 1.7-3.4 folds but not in P. cretica. Se-enhanced SbV reduction in P. vittata explains why it was more effective in Sb accumulation than P. cretica. Taken together, Se is effective in increasing the Sb uptake in both plants probably by promoting SbV reduction via GSH-GSSG cycle and/or PvHAC1/PvACR2, suggesting that Se may be used to enhance phytostabilization of Sb-contaminated soils.

2.
J Hazard Mater ; 480: 135876, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39303608

ABSTRACT

High geological background concentrations of toxic metal(loid)s arsenic (As) and cadmium (Cd) from natural enrichment in soils of karst regions have attracted much attention. In this study, paired soil-rice samples were collected from karst and non-karst regions in Guangxi, China to assess the potential risks of metal(loid) transfer from soil to rice grains, and rice grains to humans. Our results indicate that the karstic soils had greater As (25.7 vs. 12.4 mg·kg-1) and Cd (2.12 vs. 1.04 mg·kg-1) contents than those in non-karstic soils. However, metal(loid) transfer from soil to rice grains (ratio of rice grains to soil content) of As and Cd was 40 % and 49 % lower in karst regions, which may relate to their 42 % and 61 % lower HNO3-extractable As and CaCl2-extractable Cd, resulting in similar As/Cd contents in karstic and non-karstic rice grains. In vitro assay using a modified physiologically-based extraction test shows that karstic rice grains had a lower As/Cd bioaccessibility than non-karstic grains, which can be attributed to their ∼50 % greater P content, which negatively correlated with As/Cd bioaccessibility. Additionally, karstic rice grains had 39 % greater phytate and exhibited 45 % and 9.4 % lower As and Cd bioaccessibility in the gastric phase with phytate supplement at 0.6 %. Our work indicates that despite the greater As/Cd contents in karstic soils, the risks of As/Cd transfer from soil to rice grains as well as their exposure risks to humans via rice consumption may not be greater than non-karst regions.

4.
J Hazard Mater ; 477: 135322, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39079291

ABSTRACT

Arsenic-hyperaccumulator Pteris vittata exhibits remarkable absorption ability for chromium (Cr) while beneficial element selenium (Se) helps to reduce Cr-induced stress in plants. However, the effects of Se on the Cr uptake and the associated mechanisms in P. vittata are unclear, which were investigated in this study. P. vittata plants were grown for 14 days in 0.2-strength Hoagland solution containing 10 (Cr10) or 100 µM (Cr100) chromate (CrVI) and 1 µM selenate (Se1). The plant biomass, malondialdehyde contents, total Cr and Se contents, Cr speciation, expression of genes associated with Cr uptake, and Cr subcellular distribution in P. vittata were determined. P. vittata effectively accumulated Cr by concentrating 96-99% in the roots under Cr100 treatment. Further, Se substantially increased its Cr contents by 98% to 11,596 mg kg-1 in the roots, which may result from Se's role in reducing its oxidative stress as supported by 27-62% reduction in the malondialdehyde contents. Though supplied with CrVI, up to 98% of the Cr in the roots was reduced to insoluble chromite (CrIII), with 83-89% being distributed on root cell walls. Neither Cr nor Se upregulated the expression of sulfate transporters PvSultr1;1-1;2 or phosphate transporter PvPht1;4, indicating their limited role in Cr uptake. P. vittata effectively accumulates Cr in the roots mainly as CrIII on cell walls and Se effectively enhances its Cr uptake by reducing its oxidative stress. Our study suggests that Se can be used to enhance P. vittata Cr uptake and reduce its oxidative stress, which may have application in phytostabilization of Cr-contaminated soils.


Subject(s)
Chromium , Plant Roots , Pteris , Selenium , Soil Pollutants , Pteris/metabolism , Pteris/drug effects , Chromium/metabolism , Chromium/toxicity , Selenium/metabolism , Selenium/pharmacology , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Plant Roots/metabolism , Plant Roots/drug effects , Malondialdehyde/metabolism , Arsenic/metabolism , Arsenic/toxicity , Oxidative Stress/drug effects , Biodegradation, Environmental , Chromates/toxicity , Chromates/metabolism , Gene Expression Regulation, Plant/drug effects
5.
J Hazard Mater ; 476: 135218, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39024771

ABSTRACT

Rice cadmium (Cd) and microplastics are prevalent contaminants, posing a co-exposure threat to humans by means of dietary intake. To assess whether co-exposure of microplastics affects the bioavailability of rice Cd, mice were exposed to Cd-contaminated rice with microplastic co-exposure. We found that polyethylene (PE), polystyrene (PS), polypropylene (PP), and polyamide (PA) microplastic co-exposure via diet consumption (2 µg g-1) caused 1.17-1.38-fold higher Cd accumulation in tissue of mice fed by Cd-rice. For mice with co-exposure of PE microplastics, the higher rice-Cd bioavailability corresponded to colonization of Lactobacillus reuteri (38.9 % vs 17.5 %) in the gut compared to control mice, which caused higher production of gut metabolites particularly peptides, likely causing a 'side effect' of elevating Cd solubility in the intestinal lumen. In addition, abundance of sphingosine 1-phosphate in the gut of mice was reduced under PE microplastic exposure, which may reduce intracellular calcium ions (Ca2+) in enterocytes and form a weaker competition in pumping of intracellular Ca2+ and Cd2+ across the basolateral membrane of enterocytes, leading to higher Cd2+ transport efficiency. The results suggest elevated Cd exposure risk from rice consumption with microplastic co-exposure at environmentally relevant low concentrations.


Subject(s)
Cadmium , Microplastics , Oryza , Animals , Oryza/metabolism , Microplastics/toxicity , Cadmium/toxicity , Cadmium/metabolism , Food Contamination , Mice , Male , Dietary Exposure , Biological Availability
6.
J Hazard Mater ; 476: 135154, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38986410

ABSTRACT

It is known that selenium (Se) enhances plant growth and arsenic (As) accumulation in As-hyperaccumulator Pteris vittata, but the associated mechanisms are unclear. In this study, P. vittata was exposed to 50 µM arsenate (AsV) under hydroponics plus 25 or 50 µM foliar selenate. After 3-weeks of growth, the plant biomass, As and Se contents, As speciation, malondialdehyde (MDA) and glutathione (GSH and GSSG) levels, and important genes related to As-metabolism in P. vittata were determined. Foliar-Se increased plant biomass by 17 - 30 %, possibly due to 9.1 - 19 % reduction in MDA content compared to the As control. Further, foliar-Se enhanced the As contents by 1.9-3.5 folds and increased arsenite (AsIII) contents by 64 - 136 % in the fronds. The increased AsV reduction to AsIII was attributed to 60 - 131 % increase in glutathione peroxidase activity, which mediates GSH oxidation to GSSG (8.8 -29 % increase) in the fronds. Further, foliar-Se increased the expression of AsIII antiporters PvACR3;1-3;3 by 1.6 - 2.1 folds but had no impact on phosphate transporters PvPht1 or arsenate reductases PvHAC1/2. Our results indicate that foliar-Se effectively enhances plant growth and arsenic accumulation by promoting the GSH-GSSG cycle and upregulating gene expression of AsIII antiporters, which are responsible for AsIII translocation from the roots to fronds and AsIII sequestration into the fronds. The data indicate that foliar-Se can effectively improve phytoremediation efficiency of P. vittata in As-contaminated soils.


Subject(s)
Arsenic , Arsenites , Glutathione , Plant Leaves , Pteris , Selenium , Arsenates/metabolism , Arsenic/metabolism , Arsenites/metabolism , Biodegradation, Environmental , Glutathione/metabolism , Malondialdehyde/metabolism , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Leaves/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Pteris/metabolism , Pteris/growth & development , Pteris/genetics , Pteris/drug effects , Selenium/metabolism , Selenium/pharmacology , Soil Pollutants/metabolism
7.
Environ Sci Technol ; 58(26): 11534-11541, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38865317

ABSTRACT

Pteris vittata is the first-reported arsenic (As) hyperaccumulator, which has been applied to phytoremediation of As-contaminated soil. PvACR3, a key arsenite (AsIII) antiporter, plays an important role in As hyperaccumulation in P. vittata. However, its functions in plants are not fully understood. In this study, the PvACR3 gene was heterologously expressed in tobacco, driven by its native promoter (ProPvACR3). After growing at 5 µM AsIII or 10 µM AsV in hydroponics for 1-5 days, PvACR3-expression enhanced the As levels in leaves by 66.4-113 and 51.8-101%, without impacting the As contents in the roots or stems. When cultivated in As-contaminated soil, PvACR3-expressed transgenic plants accumulated 47.9-85.5% greater As in the leaves than wild-type plants. In addition, PvACR3-expression increased the As resistance in transgenic tobacco, showing that enhanced leaf As levels are not detrimental to its overall As tolerance. PvACR3 was mainly expressed in tobacco leaf veins and was likely to unload AsIII from the vein xylem vessels to the mesophyll cells, thus elevating the leaf As levels. This work demonstrates that heterologously expressing PvACR3 under its native promoter specifically enhances leaf As accumulation in tobacco, which helps to reveal the As-hyperaccumulation mechanism in P. vittata and to enhance the As accumulation in plant leaves for phytoremediation.


Subject(s)
Arsenic , Nicotiana , Plant Leaves , Plants, Genetically Modified , Nicotiana/metabolism , Nicotiana/genetics , Arsenic/metabolism , Plant Leaves/metabolism , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic , Biodegradation, Environmental , Soil Pollutants/metabolism
8.
J Hazard Mater ; 474: 134867, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38861900

ABSTRACT

Organic phosphorus (Po) is a large component of soil P, but it is often unavailable for plant uptake. Purple acid phosphatases (PAP) can hydrolyze a wide range of Po, playing an important role in Po utilization by plants. In this study, we investigated a novel secretary PvPAP1 from the As-hyperaccumulator Pteris vittata, which can effectively utilize exogenous Po, including adenosine triphosphate (ATP) and phytate. Unlike other PAP, PvPAP1 was abundantly-expressed in P. vittata roots, which was upregulated 3.5-folds under P-deprivation than P-sufficient conditions. When expressed in tobacco, its activity in the roots of PvPAP1-Ex lines was ∼8 folds greater than that in wild-type (WT) plants. Besides, PvPAP1 exhibited its secretory ability as evidenced by the sapphire-blue color on the root surface after treating with 5-bromo-4-chloro-3-indolyl phosphate. In a long-term experiment using sand media, PvPAP1-expressing tobacco plants showed 25-30 % greater root biomass than WT plants when using ATP as the sole P source. This is because PvPAP1-expression enhanced its phosphatase activity by 6.5-9.2 folds in transgenic tobacco, thereby increasing the P contents by 39-41 % in its roots under ATP treatment and 9.4-30 % under phytate treatment. The results highlight PvPAP1 as a novel secreted phosphatase crucial for external Po utilization in P. vittata, suggesting that PvPAP1 has the potential to serve as a valuable gene resource for enhancing Po utilization by crop plants.


Subject(s)
Nicotiana , Phosphorus , Phytic Acid , Plant Roots , Pteris , Phytic Acid/metabolism , Nicotiana/metabolism , Nicotiana/genetics , Nicotiana/growth & development , Phosphorus/metabolism , Pteris/metabolism , Pteris/genetics , Pteris/growth & development , Plant Roots/metabolism , Plant Roots/growth & development , Hydrolysis , Plants, Genetically Modified/growth & development , Plant Proteins/metabolism , Plant Proteins/genetics , Acid Phosphatase/metabolism , Acid Phosphatase/genetics , Arsenic/metabolism , Gene Expression Regulation, Plant
9.
J Agric Food Chem ; 72(30): 16603-16613, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38943592

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) influence silicon (Si) uptake by plants, but the mechanisms remain unclear. This study investigated the mechanisms of AMF-mediated Si uptake by rice, a model Si-accumulating plant, and explored the tripartite interactions among AMF, Si, and phosphorus (P). AMF inoculation increased shoot Si content by 97% when supplied with silicic acid and by 29% with calcium silicate and upregulated expression of Si transporters Lsi1 and Lsi2 in roots. Supplying Si only to AMF hyphae increased the root Si content by 113%, indicating direct Si uptake by hyphae. Mechanisms of AMF-induced Si uptake were elucidated: 1) direct Si uptake by hyphae, 2) increased silicate dissolution, and 3) upregulation of Si transporters. Silicon application also increased AMF colonization by 28%, and the absence of interactions was observed on P uptake. Altogether, AMF support Si acquisition and Si fosters AMF colonization in rice, whereas the P uptake depends more on AMF than on Si.


Subject(s)
Mycorrhizae , Oryza , Plant Proteins , Plant Roots , Silicon , Oryza/metabolism , Oryza/microbiology , Mycorrhizae/metabolism , Mycorrhizae/physiology , Silicon/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Plant Proteins/metabolism , Plant Proteins/genetics , Phosphorus/metabolism , Biological Transport
10.
Environ Sci Technol ; 58(17): 7346-7356, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38624169

ABSTRACT

Arsenic (As) contamination in soil poses a potential threat to human health via crop uptake. As-hyperaccumulator Pteris vittata serves as a model plant to study As uptake and associated mechanisms. This study focuses on a novel P/AsV transport system mediated by low-affinity phosphate transporter-B 1 family (PTB1) in P. vittata. Here, we identified two plasma-membrane-localized PTB1 genes, PvPTB1;1/1;2, in vascular plants for the first time, which were 4.4-40-fold greater in expression in P. vittata than in other Pteris ferns. Functional complementation of a yeast P-uptake mutant and enhanced P accumulation in transgenic Arabidopsis thaliana confirmed their role in P uptake. Moreover, the expression of PvPTB1;1/1;2 facilitated the transport and accumulation of As in both yeast and A. thaliana shoots, demonstrating a comparable AsV uptake capacity. Microdissection-qPCR analysis and single-cell transcriptome analysis collectively suggest that PvPTB1;1/1;2 are specifically expressed in the epidermal cells of P. vittata roots. PTB1 may play a pivotal role in efficient P recycling during phytate secretion and hydrolysis in P. vittata roots. In summary, the dual P transport mechanisms consisting of high-affinity Pht1 and low-affinity PTB1 may have contributed to the efficient P/As uptake in P. vittata, thereby contributing to efficient phytoremediation for As-contaminated soils.


Subject(s)
Arsenic , Phosphate Transport Proteins , Phosphates , Pteris , Pteris/metabolism , Pteris/genetics , Arsenic/metabolism , Phosphates/metabolism , Phosphate Transport Proteins/metabolism , Phosphate Transport Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Soil Pollutants/metabolism , Biological Transport
11.
Environ Sci Technol ; 58(18): 7870-7879, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38647530

ABSTRACT

Sparingly-soluble phosphate rock (PR), a raw material for P-fertilizer production, can be effectively utilized by the As-hyperaccumulator Pteris vittata but not most plants. In this study, we investigated the associated mechanisms by measuring dissolved organic carbon (DOC) and acid phosphatase in the rhizosphere, and nutrient uptake and gene expression related to the As metabolism in P. vittata. The plants were grown in a soil containing 200 mg kg-1 As and/or 1.5% PR for 30 days. Compared to the As treatment, the P. vittata biomass was increased by 33% to 4.6 g plant-1 in the As+PR treatment, corresponding to 27% decrease in its frond oxidative stress as measured by malondialdehyde. Due to PR-enhanced DOC production in the rhizosphere, the Ca, P, and As contents in P. vittata fronds were increased by 17% to 9.7 g kg-1, 29% to 5.0 g kg-1, and 57% to 1045 mg kg-1 in the As+PR treatment, thereby supporting its better growth. Besides, PR-induced rhizosphere pH increase from 5.0 to 6.9 promoted greater P uptake by P. vittata probably via upregulating low-affinity P transporters PvPTB1;1/1;2 by 3.7-4.1 folds. Consequently, 29% lower available-P induced the 3.3-fold upregulation of high-affinity P transporter PvPht1;3 in the As+PR treatment, which was probably responsible for the 58% decrease in available-As content in the rhizosphere. Consistent with the enhanced As translocation and sequestration, arsenite antiporters PvACR3/3;3 were upregulated by 1.8-4.4 folds in the As+PR than As treatment. In short, sparingly-soluble PR enhanced the Ca, P, and As availability in P. vittata rhizosphere and improved their uptake via upregulating genes related to As metabolism, suggesting its potential application for improving phytoremediation in As-contaminated soils.


Subject(s)
Arsenic , Phosphates , Pteris , Rhizosphere , Arsenic/metabolism , Pteris/metabolism , Phosphates/metabolism , Soil Pollutants/metabolism , Soil/chemistry
12.
Eco Environ Health ; 3(2): 183-191, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38646095

ABSTRACT

Dihalogenated nitrophenols (2,6-DHNPs), an emerging group of aromatic disinfection byproducts (DBPs) detected in drinking water, have limited available information regarding their persistence and toxicological risks. The present study found that 2,6-DHNPs are resistant to major drinking water treatment processes (sedimentation and filtration) and households methods (boiling, filtration, microwave irradiation, and ultrasonic cleaning). To further assess their health risks, we conducted a series of toxicology studies using zebrafish embryos as the model organism. Our findings reveal that these emerging 2,6-DHNPs showed lethal toxicity 248 times greater than that of the regulated DBP, dichloroacetic acid. Specifically, at sublethal concentrations, exposure to 2,6-DHNPs generated reactive oxygen species (ROS), caused apoptosis, inhibited cardiac looping, and induced cardiac failure in zebrafish. Remarkably, the use of a ROS scavenger, N-acetyl-l-cysteine, considerably mitigated these adverse effects, emphasizing the essential role of ROS in 2,6-DHNP-induced cardiotoxicity. Our findings highlight the cardiotoxic potential of 2,6-DHNPs in drinking water even at low concentrations of 19 µg/L and the beneficial effect of N-acetyl-l-cysteine in alleviating the 2,6-DHNP-induced cardiotoxicity. This study underscores the urgent need for increased scrutiny of these emerging compounds in public health discussions.

13.
Sci Total Environ ; 926: 171922, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38522532

ABSTRACT

The first-known As-hyperaccumulator Pteris vittata is efficient in As uptake and translocation, which can be used for phytoremediation of As-contaminated soils. However, the underlying mechanisms of As-enhanced plant growth are unknown. We used untargeted metabolomics to investigate the potential metabolites and associated metabolic pathways regulating As-enhanced plant growth in P. vittata. After 60 days of growth in an MS-agar medium containing 15 mg kg-1 As, P. vittata biomass was 33-34 % greater than the no-As control. Similarly, the As contents in P. vittata roots and fronds were 272 and 1300 mg kg-1, considerably greater than the no-As control. Univariate and multivariate analyses based on electrospray ionization indicate that As exposure changed the expression of 1604 and 1248 metabolites in positive and negative modes. By comparing with the no-As control, As exposure significantly changed the expression of 14 metabolites including abscisic acid, d-glucose, raffinose, stachyose, chitobiose, xylitol, gibberellic acids, castasterone, citric acid, riboflavin-5-phosphate, ubiquinone, ubiquinol, UDP-glucose, and GDP-glucose. These metabolites are involved in phytohormone synthesis, energy metabolism, and sugar metabolism and may all potentially contribute to regulating As-enhanced plant growth in P. vittata. Our data provide clues to understanding the metabolic regulations of As-enhanced plant growth in P. vittata, which helps to enhance its phytoremediation efficiency of As-contaminated soils.


Subject(s)
Arsenic , Pteris , Soil Pollutants , Arsenic/analysis , Pteris/metabolism , Soil Pollutants/analysis , Biodegradation, Environmental , Plant Roots/metabolism , Soil , Glucose/metabolism
14.
Environ Sci Technol ; 58(8): 3858-3868, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38356137

ABSTRACT

Phytate, the principal P storage in plant seeds, is also an important organic P in soils, but it is unavailable for plant uptake. However, the As-hyperaccumulator Pteris vittata can effectively utilize soluble Na-phytate, while its ability to utilize insoluble Ca/Fe-phytate is unclear. Here, we investigated phytate uptake and the underlying mechanisms based on the phytase activity, nutrient uptake, and expression of genes involved in As metabolisms. P. vittata plants were cultivated hydroponically in 0.2-strength Hoagland nutrient solution containing 50 µM As and 0.2 mM Na/Ca/Fe-phytate, with 0.2 mM soluble-P as the control. As the sole P source, all three phytates supported P. vittata growth, with its biomass being 3.2-4.1 g plant-1 and Ca/Fe-phytate being 19-29% more effective than Na-phytate. Phytate supplied soluble P to P. vittata probably via phytase hydrolysis, which was supported by 0.4-0.7 nmol P min-1 g-1 root fresh weight day-1 phytase activity in its root exudates, with 29-545 µM phytate-P being released into the growth media. Besides, compared to Na-phytate, Ca/Fe-phytate enhanced the As contents by 102-140% to 657-781 mg kg-1 in P. vittata roots and by 43-86% to 1109-1447 mg kg-1 in the fronds, which was accompanied by 21-108% increase in Ca and Fe uptake. The increased plant As is probably attributed to 1.3-2.6 fold upregulation of P transporters PvPht1;3/4 for root As uptake, and 1.8-4.3 fold upregulation of arsenite antiporters PvACR3/3;1/3;3 for As translocation to and As sequestration into the fronds. This is the first report to show that, besides soluble Na-phytate, P. vittata can also effectively utilize insoluble Ca/Fe-phytate as the sole P source, which sheds light onto improving its application in phytoremediation of As-contaminated sites.


Subject(s)
6-Phytase , Arsenic , Pteris , Soil Pollutants , 6-Phytase/metabolism , Pteris/metabolism , Phytic Acid/metabolism , Plant Roots/chemistry , Plant Roots/metabolism , Biodegradation, Environmental
15.
Bull Environ Contam Toxicol ; 112(2): 27, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38281165

ABSTRACT

There are growing concerns about elevated lead (Pb) levels in lip cosmetics, yet in China, the largest lip cosmetic market, recent Pb contamination in lip cosmetics and associated Pb exposure remain unclear. Here, we measured Pb levels of 29 popular lip cosmetics in China and conducted the bioaccessibility-corrected carcinogenic risk assessments and sensitivity analysis regarding Pb exposure for consumers using Monte Carlo simulation. The Pb concentrations of collected samples ranged from undetectable (< 0.05 µg/kg) to 0.21 mg/kg, all of which were well below the Pb concentration limit set for cosmetics in China (10 mg/kg). The 50th percentile incremental lifetime cancer risk (ILCR) of Pb in Chinese cosmetics (1.20E-07) was below the acceptable level (1E-06), indicating that the application of lip cosmetics and subsequent Pb exposure does not pose carcinogenic risks to consumers in most cases. The results of this study provide new insights into understanding the Pb risk in lip cosmetics.


Subject(s)
Cosmetics , Metals, Heavy , Carcinogens/toxicity , Carcinogens/analysis , Lead/analysis , Lip/chemistry , Risk Assessment/methods , Cosmetics/analysis , China , Metals, Heavy/analysis , Environmental Monitoring
16.
Environ Res ; 243: 117842, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38065384

ABSTRACT

The potential health risk caused by long-term exposure to heavy metals in household dust is not only depended on their total content, but also bioaccessibility. In this study, twenty-one dust samples were collected from residential buildings, schools, and laboratories in 14 provincial-capital/industrial cities of China, aiming to evaluate the total contents, fractionation, bioaccessibility and health risks of nine heavy metals (As, Cd, Cr, Ni, Pb, Mn, Zn, Fe, and Cu). Results showed that the highest levels of Cd, Cr, Ni and Zn were found in laboratory dust, As, Pb and Mn in school dust, and Fe and Cu in residential dust, indicating different source profiles of the heavy metals. The mean bioaccessibility of the heavy metals across all samples as evaluated using SBRC (Solubility Bioavailability Research Consortium), IVG (In Vitro Gastrointestinal), and PBET (Physiologically Based Extraction Test) assays was 58.4%, 32.4% and 17.2% in gastric phase (GP), and 24.9%, 21.9% and 9.39% in intestinal phase (IP), respectively. Cadmium had the highest content in the fractions of E1+C2 (43.7%), as determined by sequential extraction, and Pb, Mn, and Zn had a higher content in E1+C2+F3 (64.2%, 67.2%, 78.8%), resulting in a higher bioaccessibility of these heavy metals than others. Moreover, the bioaccessibility of most heavy metals was inversely related to dust pH (R = -0.18 in GP; -0.18 in IP; P < 0.01) and particle size, while a positive correlation was observed with total organic carbon (R = 0.40 in GP; 0.38 in IP; P < 0.01). The exposure risk calculated by the highest bioaccessibility was generally lower than that calculated by the total content. However, Pb in one school dust sample had an unacceptable carcinogenic risk (adult risk = 1.19 × 10-4; child risk = 1.08 × 10-4). This study suggests that bioaccessibility of heavy metals in household dust is likely related to geochemical fractions and physical/chemical properties. Further research is needed to explore the sources of bioaccessible heavy metals in household dust.


Subject(s)
Metals, Heavy , Soil Pollutants , Child , Adult , Humans , Dust/analysis , Cadmium , Cities , Lead , Environmental Monitoring/methods , Metals, Heavy/analysis , China , Risk Assessment/methods , Soil Pollutants/analysis
17.
J Hazard Mater ; 465: 133330, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38147757

ABSTRACT

Cadmium (Cd) contamination of selenium (Se)-rich soils may jeopardize the nutritional benefits of Se-biofortified crops. This study employed diffusive gradients in thin-films (DGT) technique and DIFS (DGT-induced fluxes in soils) model to understand the interdependency and driving factors of Se and Cd distribution and desorption kinetics across 50 soils from south China with naturally elevated levels. DGT-labile Se was the highest (up to 2.66 µg L-1) in non-carbonate/shale-derived soils, while Cd was maximal (5.53 µg L-1) in carbonate-based soils, reflecting soil background concentrations and soil characteristics. Over one-third of the soils showed labile Se:Cd molar ratio below 0.7, suggesting Cd phytotoxicity risks. The DIFS-derived response times (Tc) and desorption rate constants (k-1) suggested that Se was resupplied to the soil solution faster than Cd in soils with higher pH and SOM level, but Se resupply was still restricted due to the rapid depletion of its labile pool. As the first study of Se and Cd release kinetics in soils, our results reveal dependence on soil parent materials, with low labile Se:Cd soils presenting greater Cd hazards. By elucidating Se and Cd lability and interactions in soils, our findings help to inform management strategies to balance reduced Cd risk with adequate Se availability.

18.
Eco Environ Health ; 2(3): 107-116, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38074988

ABSTRACT

Alcohol consumption alters gut microflora and damages intestinal tight junction barriers, which may affect arsenic (As) oral bioavailability. In this study, mice were exposed to arsenate in the diet (6 µg/g) over a 3-week period and gavaged daily with Chinese liquor (0.05 or 0.10 mL per mouse per day). Following ingestion, 78.0% and 72.9% of the total As intake was absorbed and excreted via urine when co-exposed with liquor at daily doses of 0.05 or 0.10 mL, significantly greater than when As was supplied alone (44.7%). Alcohol co-exposure significantly altered gut microbiota but did not significantly alter As biotransformation in the intestinal tract or tissue. Significantly lower relative mRNA expression was observed for genes encoding for tight junctions in the ileum of liquor co-exposed mice, contributing to greater As bioavailability attributable to enhanced As absorption via the intestinal paracellular pathway. However, As concentration in the liver, kidney, and intestinal tissue of liquor-treated mice was decreased by 24.4%-42.6%, 27.5%-38.1%, and 28.1%-48.9% compared to control mice. This was likely due to greater renal glomerular filtration rate induced by alcohol, as suggested by significantly lower expression of genes encoding for renal tight junctions. In addition, in mice gavaged daily with 0.05 mL liquor, the serum antidiuretic hormone level was significantly lower than control mice (2.83 ± 0.59 vs. 5.40 ± 1.10 pg/mL), suggesting the diuretic function of alcohol consumption, which may facilitate As elimination via urine. These results highlight that alcohol consumption has a significant impact on the bioavailability and accumulation of As.

19.
Environ Sci Technol ; 57(48): 19463-19472, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37943691

ABSTRACT

Prebiotics may stimulate beneficial gut microorganisms. However, it remains unclear whether they can lower the oral bioavailability of early life arsenic (As) exposure via regulating gut microbiota and altering As biotransformation along the gastrointestinal (GI) tract. In this study, weanling mice were exposed to arsenate (iAsV) via diet (7.5 µg As g-1) amended with fructooligosaccharides (FOS), galactooligosaccharides (GOS), and inulin individually at 1% and 5% (w/w). Compared to As exposure control mice, As concentrations in mouse blood, liver, and kidneys and As urinary excretion factor (UEF) were reduced by 43.7%-74.1% when treated with 5% GOS. The decrease corresponded to a significant proliferation of Akkermansia and Psychrobacter, reduced percentage of inorganic arsenite (iAsIII) and iAsV by 47.4% and 65.4%, and increased proportion of DMAV in intestinal contents by 101% in the guts of mice treated with 5% GOS compared to the As control group. In contrast, FOS and inulin either at l% or 5% did not reduce As concentration in mouse blood, liver, and kidneys or As UEF. These results suggest that GOS supplementation may be a gut microbiota-regulating approach to lower early life As exposure via stimulating the growth of Akkermansia and Psychrobacter and enhancing As methylation in the GI tract.


Subject(s)
Arsenic , Gastrointestinal Microbiome , Mice , Animals , Inulin/metabolism , Prebiotics , Liver/metabolism
20.
J Hazard Mater ; 460: 132484, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37688872

ABSTRACT

In contaminated soils, arsenic (As) often co-exists with copper (Cu). However, its effects on As accumulation and the related mechanisms in As-hyperaccumulator Pteris vittata remain unclear. In this study, P. vittata plants were exposed to 50 µM As and/or 50 µM Cu under hydroponics to investigate the effects of Cu on plant growth and As accumulation, as well as gene expression related to arsenic uptake (P transporters), reduction (arsenate reductases), and translocation and sequestration (arsenite antiporters). After 14 d of growth and compared to the As treatment, the As concentration in P. vittata fronds increased by 1.4-times from 793 to 1131 mg·kg-1 and its biomass increased by 1.2-fold from 18.0 to 21.1 g·plant-1 in the As+Cu treatment. Copper-enhanced As accumulation was probably due to upregulated gene expressions related to As-metabolisms including As uptake (1.9-fold in P transporter PvPht1;3), translocation (2.1-2.4 fold in arsenite antiporters PvACR3/3;2) and sequestration (1.5-2.0 fold in arsenite antiporters PvACR3;1/3;3). Our results suggest that moderate amount of Cu can help to increase the As accumulation efficiency in P. vittata, which has implication in its application in phytoremedation in As and Cu co-contaminated soils.


Subject(s)
Arsenic , Arsenites , Pteris , Copper , Arsenic/toxicity , Pteris/genetics , Membrane Transport Proteins , Antiporters , Gene Expression , Soil
SELECTION OF CITATIONS
SEARCH DETAIL