Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 28(23-24): 3601-3605, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30392779

ABSTRACT

Synthesis and structure-activity relationships (SAR) of a novel series of benzodiazepinedione-based inhibitors of Clostridium difficile toxin B (TcdB) are described. Compounds demonstrating low nanomolar affinity for TcdB, and which possess improved stability in mouse plasma vs. earlier compounds from this series, have been identified. Optimized compound 11d demonstrates a good pharmacokinetic (PK) profile in mouse and hamster and is efficacious in a hamster survival model of Clostridium difficile infection.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Bacterial Proteins/antagonists & inhibitors , Bacterial Toxins/antagonists & inhibitors , Benzodiazepines/chemistry , Administration, Oral , Animals , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Benzodiazepines/pharmacokinetics , Benzodiazepines/therapeutic use , CHO Cells , Clostridioides difficile/metabolism , Clostridium Infections/drug therapy , Clostridium Infections/veterinary , Cricetinae , Cricetulus , Half-Life , Mice , Structure-Activity Relationship
2.
Article in English | MEDLINE | ID: mdl-29483125

ABSTRACT

Clostridium difficile infection (CDI) is the leading cause of hospital-acquired infectious diarrhea, with significant morbidity, mortality, and associated health care costs. The major risk factor for CDI is antimicrobial therapy, which disrupts the normal gut microbiota and allows C. difficile to flourish. Treatment of CDI with antimicrobials is generally effective in the short term, but recurrent infections are frequent and problematic, indicating that improved treatment options are necessary. Symptoms of disease are largely due to two homologous toxins, TcdA and TcdB, which are glucosyltransferases that inhibit host Rho GTPases. As the normal gut microbiota is an important component of resistance to CDI, our goal was to develop an effective nonantimicrobial therapy. Here, we report a highly potent small-molecule inhibitor (VB-82252) of TcdA and TcdB. This compound inhibits the UDP-glucose hydrolysis activity of TcdB and protects cells from intoxication after challenge with either toxin. Oral dosing of the inhibitor prevented inflammation in a murine intrarectal toxin challenge model. In a murine model of recurrent CDI, the inhibitor reduced weight loss and gut inflammation during acute disease and did not cause the recurrent disease that was observed with vancomycin treatment. Lastly, the inhibitor demonstrated efficacy similar to that of vancomycin in a hamster disease model. Overall, these results demonstrate that small-molecule inhibition of C. difficile toxin UDP-glucose hydrolysis activity is a promising nonantimicrobial approach to the treatment of CDI.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Clostridium Infections/drug therapy , Uridine Diphosphate Glucose/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Cell Line , Cell Survival , Clostridioides difficile/drug effects , Clostridioides difficile/pathogenicity , Clostridium Infections/metabolism , Colon/microbiology , Cricetinae , Humans , Hydrolysis , Mice
3.
Bioorg Med Chem Lett ; 28(4): 756-761, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29331267

ABSTRACT

The discovery, synthesis and preliminary structure-activity relationship (SAR) of a novel class of inhibitors of Clostridium difficile (C. difficile) toxin B (TcdB) is described. A high throughput screening (HTS) campaign resulted in the identification of moderately active screening hits 1-5 the most potent of which was compound 1 (IC50 = 0.77 µM). In silico docking of an early analog offered suggestions for structural modification which resulted in the design and synthesis of highly potent analogs 13j(IC50 = 1 nM) and 13 l(IC50 = 7 nM) which were chosen as leads for further optimization.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Toxins/antagonists & inhibitors , Clostridioides difficile/drug effects , Nucleotidases/antagonists & inhibitors , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Apoptosis/drug effects , CHO Cells , Cricetulus , Drug Stability , Enterotoxins/antagonists & inhibitors , High-Throughput Screening Assays , Humans , Mice , Microbial Sensitivity Tests , Microsomes, Liver/metabolism , Molecular Docking Simulation , Molecular Structure , Stereoisomerism , Structure-Activity Relationship
4.
Spine (Phila Pa 1976) ; 36(3): 197-202, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-20714281

ABSTRACT

STUDY DESIGN: Inflammatory proteins were quantified in bilateral dorsal root ganglions (DRGs) at 1 hour and 1 day using a multiplexed assay after 2 different unilateral nerve root compression injuries. OBJECTIVE: To quantify cytokines and a chemokine in the DRG after nerve root compression with and without a chemical injury to determine contributing inflammatory factors in the DRG that may mediate radicular nociception in clinically relevant nerve root pathologies. SUMMARY OF BACKGROUND DATA: Inflammatory cytokines are known to relate to the behavioral hypersensitivity induced after injuries to the nerve root. However, the relative expression of these proteins in the DRG after cervical nerve root compression are not known. METHODS: The right C7 nerve root underwent transient compression (10 gf) or transient compression with a chemical irritation (10 gf + chr). The chemical injury was also given alone (chr), and the nerve root was exposed (sham), providing 2 types of controls. Mechanical allodynia was measured to assess behavioral outcomes. Interleukin (IL)-1b, IL-6, tumor necrosis factor-a, and macrophage inflammatory protein 3 (MIP3) were quantified in bilateral DRGs at 1 hour and 1 day using a multiplexed assay. RESULTS: Ipsilateral allodynia at day 1 after 10 gf + chr was significantly increased over both 10 gf and chr (P < 0.049). Cytokines and MIP3 were not statistically increased over sham at 1 hour. By day 1 after 10 gf + chr, all proteins (IL-1ß, IL-6, tumor necrosis factor-a, MIP3) were significantly increased over both normal and sham in the ipsilateral DRG (P < 0.036), and the cytokines were also significantly increased over chr (P < 0.029). Despite allodynia at day 1, cytokines at that time were not increased over normal or sham after either 10 gf or chr. CONCLUSION: Nerve root compression alone may not be sufficient to induce early increases in proinflammatory cytokines in the DRG after radiculopathy and this early protein response may not be directly responsible for nociception in this type of injury.


Subject(s)
Chemokines/biosynthesis , Cytokines/biosynthesis , Ganglia, Spinal/metabolism , Gene Expression Regulation , Inflammation Mediators/metabolism , Radiculopathy/metabolism , Animals , Ganglia, Spinal/pathology , Male , Radiculopathy/pathology , Rats , Rats, Sprague-Dawley , Spinal Nerve Roots/metabolism , Spinal Nerve Roots/pathology , Time Factors
5.
Eur J Pharmacol ; 643(2-3): 202-10, 2010 Sep 25.
Article in English | MEDLINE | ID: mdl-20621081

ABSTRACT

Microglia are commonly described as existing in resting or active states based on morphology or level of cytokine production. Extracellular ATP is a physiologically-relevant activator of microglia, which express a number of purinergic receptors. As P2Y(12) has been linked to chemotaxis, we used a panel of purinergic compounds to understand the role of ATP receptors in morphological transformation and correlate this with TNFalpha production. We quantified activation of cultured microglia with LPS or purinergic receptor agonists by using automated image analysis of cell morphology and CD11b expression and correlated this with TNFalpha release measured by ELISA. Treatment with both ATP and the P2Y(12) receptor agonist, 2-methylthio adenosine diphosphate (2MeSADP), caused a transient increase in CD11b expression (EC(50)=1.2 microM and 187 nM, respectively) and a reduction in process count that reversed within 90 min later. These changes were not accompanied by the release of TNFalpha. Forskolin, IBMX, and pertussis toxin inhibited these changes, but the PLC inhibitor, U73122, did not. 2MeSAMP blocked the ATP response, while AP4A blocked the 2MeSADP response, implicating P2Y(12/13). Microglia activation by LPS also caused an increase in CD11b expression and a reduction in process count; however, in contrast to activation by ATP, morphological transformation was accompanied by a concentration-dependent increase in TNFalpha secretion These data demonstrate that morphological transformation and TNFalpha release are separable events mediated by different, or non-convergent pathways and that although ATP can initiate morphological changes, additional factors are required to maintain activation over sustained periods.


Subject(s)
Cytokines/metabolism , Microglia/cytology , Microglia/drug effects , Purinergic Agonists/pharmacology , Purinergic Antagonists/pharmacology , Receptors, Purinergic/metabolism , Animals , CD11b Antigen/metabolism , Cells, Cultured , Enzyme Inhibitors/pharmacology , Image Processing, Computer-Assisted/methods , Microglia/metabolism , Osmolar Concentration , Purinergic P2Y Receptor Agonists/pharmacology , Purinergic P2Y Receptor Antagonists/pharmacology , Rats , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2Y12/metabolism , Time Factors , Up-Regulation/drug effects
6.
Arch Biochem Biophys ; 420(1): 55-67, 2003 Dec 01.
Article in English | MEDLINE | ID: mdl-14622975

ABSTRACT

The NARC 1 gene encodes a novel proteinase K family proteinase. The domain structure of rat Narc 1 resembles that of the subtilisin-like proprotein convertases (SPCs), except that rNarc 1 lacks the canonical P-domain of SPCs, retaining only the RGD motif as part of what might be a cryptically functioning P-domain. Narc 1 undergoes autocatalytic intramolecular processing at the site LVFAQ/, resulting in the cleavage of its prosegment and the generation of an active proteinase with a broad alkaline pH optimum and no apparent calcium requirement for activity. Both primary and secondary structural determinants influence Narc 1 substrate recognition. Our functional characterization of Narc 1 reinforces the inference drawn from the analysis of its predicted structure that this enzyme is most closely related to representatives of the proteinase K family, but that it is also sufficiently different to warrant its possible classification in a separate sub-family.


Subject(s)
Endopeptidase K/chemistry , Endopeptidase K/metabolism , Models, Chemical , Sequence Alignment , Sequence Analysis, Protein , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Calcium/chemistry , Enzyme Activation , Enzyme Stability , Gene Expression Regulation, Enzymologic/physiology , Hydrogen-Ion Concentration , Molecular Sequence Data , Oligopeptides/chemistry , Proprotein Convertase 9 , Protein Structure, Secondary , Protein Structure, Tertiary , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Homology , Structure-Activity Relationship , Temperature
7.
Life Sci ; 71(16): 1849-62, 2002 Sep 06.
Article in English | MEDLINE | ID: mdl-12175701

ABSTRACT

In mammalian cells, including those of the embryonic palate, the level of phosphorylation of cellular proteins at any given time reflects the activities of protein kinases and protein phosphatases. Both protein phosphatase-1 (PP-1) and PP-2A inhibit cAMP-mediated increases in transcription by dephosphorylating CREB at ser-133. Western blot analysis indicated that protein phosphatase 1 (PP-1) was expressed constitutively in palatal tissue during its development. Expression of PP-2A was regulated developmentally with maximal expression on gestational day (gd) 14. Densitometric scanning revealed a 30% increase in expression from gd 13 to gd 14. Virtually all phosphatase activity in the tissue extracts could be inhibited by 5 microM okadaic acid, demonstrating that PP-1 and PP-2A account for all detectable ser/thr protein phosphatase activity present in the developing palate. Moreover, no significant differences in PP-1 and PP-2A activities were observed during the period of palate development. Treatment of primary cultures of murine embryonic palate mesenchymal (MEPM) cells with forskolin (20 microM) to elevate intracellular cAMP levels, resulted in a time-dependent increase in CREB ser-133 phosphorylation and a corresponding time dependent decrease in PP-1 and PP-2A levels. Moreover, treatment of MEPM cells with okadaic acid resulted in a dramatic increase in basal CREB ser-133 phosphorylation. This suggests that PP-1 activity may contribute to transcriptional regulation of CREB and that PP-1 and PP-2A are regulated differentially by cAMP. Treatment of MEPM cells with TGF beta 1 (1 ng/ml) under conditions of TGF beta-induced CREB phosphorylation resulted in no effect on the expression of either PP-1 or PP-2A proteins and no significant alterations in total basal protein phosphatase activity. These results demonstrate that transcriptional regulation of CREB in embryonic palatal issue is dependent on the coordinate activity of specific kinases and phosphatases.


Subject(s)
Gene Expression Regulation, Enzymologic/physiology , Palate/growth & development , Phosphoric Monoester Hydrolases/physiology , Animals , Blotting, Western , Cells, Cultured , Colforsin/pharmacology , Cyclic AMP Response Element-Binding Protein/isolation & purification , Female , Image Processing, Computer-Assisted , Male , Mice , Mice, Inbred ICR , Phosphoprotein Phosphatases/biosynthesis , Protein Phosphatase 1 , Signal Transduction/physiology , Transforming Growth Factor beta/physiology
SELECTION OF CITATIONS
SEARCH DETAIL