Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Neurosci Biobehav Rev ; : 105848, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39142542

ABSTRACT

Microglia, as immune cells in the central nervous system, are closely related to cognitive impairment associated with type 2 diabetes (T2D). Preliminary explorations have investigated the relationship between T2D-related cognitive impairment and the activation and polarization of microglia. This review summarizes the potential mechanisms of microglial activation and polarization in the context of T2D. It discusses central inflammatory responses, neuronal apoptosis, amyloid-ß deposition, and abnormal phosphorylation of Tau protein mediated by microglial activation and polarization, exploring the connections between microglial activation and polarization and T2D-related cognitive impairment from multiple perspectives. Additionally, this review provides references for future treatment targeting microglia in T2D-related cognitive impairment and for clinical translation.

2.
Mol Neurobiol ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112768

ABSTRACT

Cognitive impairment associated with diabetes and Alzheimer's disease has become a major health issue affecting older individuals, with morbidity rates growing acutely each year. Ferroptosis is a novel form of cell death that is triggered by iron-dependent lipid peroxidation. A growing body of evidence suggests a strong correlation between the progression of cognitive impairment and diabetes, Alzheimer's disease, and ferroptosis. The pharmacological modulation of ferroptosis could be a promising therapeutic intervention for cognitive impairment associated with diabetes and Alzheimer's disease. In this review, we summarize evidence on ferroptosis in the context of cognitive impairment associated with diabetes and Alzheimer's disease and provide detailed insights into the function and potential action pathways of ferroptosis. Furthermore, we discuss the therapeutic importance of natural ferroptosis products in improving the cognitive impairment associated with diabetes and Alzheimer's disease and provide new insights for clinical treatment.

3.
FASEB J ; 38(14): e23829, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39017658

ABSTRACT

G protein-coupled receptors (GPCRs) are essential contributors to tumor growth and metastasis due to their roles in immune cell regulation. Therefore, GPCRs are potential targets for cancer immunotherapy. Here, we discuss the current understanding of the roles of GPCRs and their signaling pathways in tumor progression from an immunocellular perspective. Additionally, we focus on the roles of GPCRs in regulating immune checkpoint proteins involved in immune evasion. Finally, we review the progress of clinical trials of GPCR-targeted drugs for cancer treatment, which may be combined with immunotherapy to improve treatment efficacy. This expanded understanding of the role of GPCRs may shed light on the mechanisms underlying tumor progression and provide a novel perspective on cancer immunotherapy.


Subject(s)
Immunomodulation , Immunotherapy , Neoplasms , Receptors, G-Protein-Coupled , Signal Transduction , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/immunology , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy , Animals , Immunotherapy/methods , Disease Progression
4.
BMC Pregnancy Childbirth ; 24(1): 510, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075387

ABSTRACT

BACKGROUND: Unfavourable lipid and glucose levels may play a crucial role in the pathogenesis of gestational diabetes mellitus (GDM). However, there is a lack of prospective studies on the relationship between lipid profiles, lipid ratios and GDM during pregnancy. AIMS: To prospectively investigate the relationship between lipid profile and lipid ratios in early and mid-pregnancy and their pattern of change from early to mid-pregnancy and the risk of GDM. METHODS: This nested case-control study was based on maternal and child healthcare hospitals from Fujian Province, China. We included pregnant women who delivered in the hospital from January 2021 to June 2023. Lipid profiles (TC, TG, ApoA1, ApoB, HDL-c, LDL-c) and fasting glucose were measured before 14 weeks of gestation and between 20 and 28 weeks of gestation, and lipid ratios (triglyceride glucose index, TG/HDL-c and TC/HDL-c) was constructed. Logistic regression was used to assess the relationship between lipid profile, lipid ratios and GDM. RESULTS: Of 1586 pregnant women, 741 were diagnosed with GDM. After adjusting for potential confounders, TG, ApoA1, ApoB, LDL-c, triglyceride glucose index, TG/HDL-c, and TC/HDL-c in early pregnancy were positively associated with the risk of GDM (odds ratios [95% CI] for extreme interquartile comparisons were 2.040 (1.468-2.843), 1.506 (1.091-2.082), 1.529 (1.110-2.107), 1.504 (1.086-2.086), 1.952 (1.398-2.731), 2.127 (1.526-2.971), and 2.370 (1.700-3.312), all trend P < 0.05). HDL-c was negatively associated with the risk of GDM (0.639: 0.459-0.889, trend P all less than 0.05). Similarly, in mid-pregnancy, lower levels of HDL-c, higher levels of triglyceride glucose index, TG/HDL-c ratio, and TC/HDL-c ratio were associated with increased risk of GDM (all trends P < 0.05). Stably high levels (both ≥ median for early and mid-pregnancy) of triglyceride glucose index, TG/HDL-c and TC/HDL-c were associated with increased risk of GDM (OR [95% CI]: 2.369 (1.438-3.940), 1.588 (1.077-2.341), 1.921 (1.309-2.829), respectively). The opposite was true for HDL-c, where stable high levels were negatively associated with GDM risk (OR [95% CI]: 0.599 (0.405-0.883)). CONCLUSION: Increases in triglyceride glucose index, TG/HDL-c ratio, and TC/HDL-c ratio in early and mid-pregnancy, as well as their stable high levels from early to mid-pregnancy, are associated with a higher risk of GDM. In contrast, increased levels of HDL-c, both in early and mid-pregnancy, and their stable high levels from early to mid-pregnancy were associated with a lower risk of GDM. That highlighted their possible clinical relevance in identifying those at high risk of GDM.


Subject(s)
Diabetes, Gestational , Lipids , Humans , Female , Diabetes, Gestational/blood , Diabetes, Gestational/epidemiology , Pregnancy , Adult , Case-Control Studies , China/epidemiology , Lipids/blood , Prospective Studies , Blood Glucose/analysis , Risk Factors , Triglycerides/blood
5.
J Hazard Mater ; 472: 134485, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38701725

ABSTRACT

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic persistent organic pollutant (POP) that can induce DNA damage within cells. Although oxidative stress is one of the primary mechanisms causing DNA damage, its role in the process of TCDD-induced DNA damage remains unclear. In this study, the TCDD-induced production of reactive oxygen species (ROS) and the occurrence of DNA damage at the AP site were monitored simultaneously. Further investigation revealed that TCDD impaired the activities of superoxide dismutase (SOD) and catalase (CAT), compromising the cellular antioxidant defense system. Consequently, this led to an increase in the production of O2.- and NO, thus inducing DNA damage at the AP site under oxidative stress. Our findings were further substantiated by the upregulation of key genes in the base excision repair (BER) pathway and the absence of DNA AP site damage after inhibiting O2.- and NO. In addition, transcriptome sequencing revealed that TCDD induces DNA damage by upregulating genes associated with oxidative stress in the mitogen-activated protein kinase (MAPK), cyclic adenosine monophosphate (cAMP), and breast cancer pathways. This study provides important insights into the toxicity mechanisms of TCDD.


Subject(s)
DNA Damage , Oxidative Stress , Polychlorinated Dibenzodioxins , Reactive Oxygen Species , Polychlorinated Dibenzodioxins/toxicity , Oxidative Stress/drug effects , DNA Damage/drug effects , Reactive Oxygen Species/metabolism , Catalase/metabolism , Superoxide Dismutase/metabolism , DNA Repair/drug effects , Humans , Environmental Pollutants/toxicity
6.
Langmuir ; 40(23): 12179-12190, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38809579

ABSTRACT

As haloanilines (HANs) are important organic intermediates and fine chemicals, their preparation over non-noble-metal-based catalysts by catalytic hydrogenation has attracted wide attention. However, the reaction suffers from relatively harsh conditions. Herein, we found that a 3.5%Ni/P25 catalyst exhibited superior photo-thermal catalytic activity with a TOFs of 5207 h-1 for hydrogenation of p-chloronitrobenzene (p-CNB) to p-chloroaniline under a 300 W full spectrum, which was much higher than that of photo- and thermal catalysis alone. Moreover, the 3.5%Ni/P25 catalyst could be recycled 4 times and was effective for the hydrogenation of various halonitrobenzenes (HNBs) with superior selectivity. Furthermore, the kinetic research showed that the excellent catalytic performance could be attributed to the better activation and dissociation of H2 by photo-thermal catalysis and the hydrogenation of p-CNB obeyed the condensation routine by ionic hydrogenation over 3.5%Ni/P25.

7.
Br J Educ Psychol ; 94(3): 897-918, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38802998

ABSTRACT

BACKGROUND: Recent research suggested fluent processing as an explanation on why number sense contributes to simple arithmetic tasks-'Fluency hypothesis'. AIMS: The current study investigates whether number sense contributes to such arithmetic tasks when other cognitive factors are controlled for (including those that mediate the link); and whether this contribution varies as a function of participants' individual maths fluency levels. SAMPLE: Four hundred and thirty-seven Chinese schoolchildren (186 females; Mage = 83.49 months) completed a range of cognitive measures in Grade 1 (no previous classroom training) and in Grade 2 (a year later). METHODS: Number sense, arithmetic (addition and subtraction), spatial ability, visuo-spatial working memory, perception, reaction time, character reading and general intelligence were measured. RESULTS: Our data showed that the link between number sense and arithmetic was weaker in Grade 1 (Beta = .15 for addition and .06 (ns) for subtraction) compared to Grade 2 (.23-.28), but still persisted in children with no previous maths training. Further, math's performance in Grade 1 did not affect the link between number sense and maths performance in Grade 2. CONCLUSION: Our data extended previous findings by showing that number sense is linked with simple maths task performance even after controlling for multiple cognitive factors. Our results brought some evidence that number sense-arithmetic link is somewhat sensitive to previous formal maths education. Further research is needed, as the differences in effects between grades were quite small, and arithmetic in Grade 1 did not moderate the link at question in Grade 2.


Subject(s)
Mathematics , Memory, Short-Term , Humans , Female , Male , Child , Mathematics/education , Memory, Short-Term/physiology , Mathematical Concepts , Academic Performance
8.
Hormones (Athens) ; 23(2): 235-244, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564142

ABSTRACT

PURPOSE: The immature and developing hypothalamic-pituitary-thyroid axis leads to different levels of thyroid function in twin neonates, including free thyroxine (FT4), free triiodothyronine (FT3), and thyroid stimulating hormone (TSH) levels. No reference intervals for twins have been established until now. To compensate for this lack, we collected data and established this standard across different gestational ages (GAs) and sexes. METHODS: A total of 273 pairs of neonates admitted to the NICU in Southeast China from 2015 to 2022 were included. Each pair was divided into Neonate A (relatively heavy birth weight (BW)) and Neonate B (relatively light BW). Their thyroid functions were analyzed to establish reference intervals and comparisons were made stratified by GA and sex. RESULTS: The FT3, FT4, and TSH reference intervals in twin neonates with a GA of 26-36 weeks were as follows: Neonate A and B: 3.59 ± 0.99 and 3.57 ± 1.00 pmol/L; Neonate A and B: 17.03 ± 5.16 and 16.77 ± 5.29 pmol/L; and Neonate A and B: 4.097 ± 3.688 and 4.674 ± 4.850 mlU/L, respectively. There were significant differences between serum FT3 and FT4 reference intervals and GA (p < 0.05). The serum FT3 and FT4 reference intervals for male neonates were lower than those for female neonates in the 29-32-week group (p < 0.05). CONCLUSION: This was the first study, to our knowledge, to establish reference intervals for thyroid function in twin neonates from the fifth to seventh day of life, which will be beneficial for the diagnosis and management of congenital hypothyroidism.


Subject(s)
Infant, Premature , Thyroid Function Tests , Thyroid Gland , Thyrotropin , Thyroxine , Humans , Infant, Newborn , Female , Male , Retrospective Studies , Pregnancy , Reference Values , Infant, Premature/blood , Thyroid Function Tests/standards , Thyrotropin/blood , Thyroxine/blood , Thyroid Gland/physiology , Pregnancy, Twin/blood , Pregnancy, Twin/physiology , Triiodothyronine/blood , Gestational Age
9.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 763-775, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38516703

ABSTRACT

Traditional Chinese medicine (TCM) has been used to treat triple-negative breast cancer (TNBC), a breast cancer subtype with poor prognosis. Clinical studies have verified that the Sanyingfang formula (SYF), a TCM prescription, has obvious effects on inhibiting breast cancer recurrence and metastasis, prolonging patient survival, and reducing clinical symptoms. However, its active ingredients and molecular mechanisms are still unclear. In this study, the active ingredients of each herbal medicine composing SYF and their target proteins are obtained from the Traditional Chinese Medicine Systems Pharmacology database. Breast cancer-related genes are obtained from the GeneCards database. Major targets and pathways related to SYF treatment in breast cancer are identified by analyzing the above data. By conducting molecular docking analysis, we find that the active ingredients quercetin and luteolin bind well to the key targets KDR1, PPARG, SOD1, and VCAM1. In vitro experiments verify that SYF can reduce the proliferation, migration, and invasion ability of TNBC cells. Using a TNBC xenograft mouse model, we show that SYF could delay tumor growth and effectively inhibit the occurrence of breast cancer lung metastasis in vivo. PPARG, SOD1, KDR1, and VCAM1 are all regulated by SYF and may play important roles in SYF-mediated inhibition of TNBC recurrence and metastasis.


Subject(s)
Cell Proliferation , Drugs, Chinese Herbal , Molecular Docking Simulation , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Humans , Animals , Female , Mice , Cell Line, Tumor , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Network Pharmacology , Cell Movement/drug effects , Mice, Nude , Luteolin/pharmacology , Luteolin/therapeutic use , Mice, Inbred BALB C , Quercetin/pharmacology , Quercetin/chemistry , Medicine, Chinese Traditional , Gene Expression Regulation, Neoplastic/drug effects
10.
Ecotoxicol Environ Saf ; 273: 116158, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38417316

ABSTRACT

Organophosphorus flame retardants (OPFRs) have been frequently detected with relatively high concentrations in various environmental media and are considered emerging environmental pollutants. However, their biological effect and underlying mechanism is still unclear, and whether chlorinated OPFRs (Cl-OPFRs) cause adverse outcomes with the same molecular initial events or share the same key events (KEs) remains unknown. In this study, in vitro bioassays were conducted to analyze the cytotoxicity, mitochondrial impairment, DNA damage and molecular mechanisms of two Cl-OPFRs. The results showed that these two Cl-OPFRs, which have similar structures, induced severe cellular and molecular damages via different underlying mechanisms. Both tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) (TCPP) induced oxidative stress-mediated mitochondrial impairment and DNA damage, as shown by the overproduction of intracellular reactive oxygen species (ROS) and mitochondrial superoxide. Furthermore, the DNA damage caused by TCPP resulted in p53/p21-mediated cell cycle arrest, as evidenced by flow cytometry and real-time PCR. At the cellular and molecular levels, TCPP increased the sub-G1 apoptotic peak and upregulated the p53/Bax apoptosis pathway, possibly resulted in apoptosis associated with its stronger cytotoxicity. Although structurally similar to TCPP, TCEP did not induce mitochondrial impairment and DNA damage by the same KEs. These results provide insight into the toxicity of Cl-OPFRs with similar structures but different mechanisms, which is of great significance for constructing adverse outcome pathways or determining intermediate KEs.


Subject(s)
Flame Retardants , Organophosphorus Compounds , Phosphines , Organophosphorus Compounds/toxicity , Flame Retardants/toxicity , Tumor Suppressor Protein p53/genetics , Organophosphates/toxicity , DNA Damage
11.
Sci Total Environ ; 919: 170892, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38346650

ABSTRACT

Alternative splicing (AS), found in approximately 95 % of human genes, significantly amplifies protein diversity and is implicated in disease pathogenesis when dysregulated. However, the precise involvement of AS in the toxic mechanisms induced by TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) remains incompletely elucidated. This study conducted a thorough global AS analysis in six human cell lines following TCDD exposure. Our findings revealed that environmentally relevant concentration (0.1 nM) of TCDD significantly suppressed AS events in all cell types, notably inhibiting diverse splicing events and reducing transcript diversity, potentially attributed to modifications in the splicing patterns of the inhibitory factor family, particularly hnRNP. And we identified 151 genes with substantial AS alterations shared among these cell types, particularly enriched in immune and metabolic pathways. Moreover, TCDD induced cell-specific changes in splicing patterns and transcript levels, with increased sensitivity notably in THP-1 monocyte, potentially linked to aberrant expression of pivotal genes within the spliceosome pathway (DDX5, EFTUD2, PUF60, RBM25, SRSF1, and CRNKL1). This study extends our understanding of disrupted alternative splicing and its relation to the multisystem toxicity of TCDD. It sheds light on how environmental toxins affect post-transcriptional regulatory processes, offering a fresh perspective for toxicology and disease etiology investigations.


Subject(s)
Polychlorinated Dibenzodioxins , Humans , Polychlorinated Dibenzodioxins/toxicity , Alternative Splicing , Serine-Arginine Splicing Factors , Peptide Elongation Factors , Ribonucleoprotein, U5 Small Nuclear
12.
Environ Sci Technol ; 58(8): 3677-3689, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38354091

ABSTRACT

High-throughput in vitro assays combined with in vitro-in vivo extrapolation (IVIVE) leverage in vitro responses to predict the corresponding in vivo exposures and thresholds of concern. The integrated approach is also expected to offer the potential for efficient tools to provide estimates of chemical toxicity to various wildlife species instead of animal testing. However, developing fish physiologically based toxicokinetic (PBTK) models for IVIVE in ecological applications is challenging, especially for plausible estimation of an internal effective dose, such as fish equivalent concentration (FEC). Here, a fish PBTK model linked with the IVIVE approach was established, with parameter optimization of chemical unbound fraction, pH-dependent ionization and hepatic clearance, and integration of temperature effect and growth dilution. The fish PBTK-IVIVE approach provides not only a more precise estimation of tissue-specific concentrations but also a reasonable approximation of FEC targeting the estrogenic potency of endocrine-disrupting chemicals. Both predictions were compared with in vivo data and were accurate for most indissociable/dissociable chemicals. Furthermore, the model can help determine cross-species variability and sensitivity among the five fish species. Using the available IVIVE-derived FEC with target pathways is helpful to develop predicted no-effect concentration for chemicals with similar mode of action and support screening-level ecological risk assessment.


Subject(s)
Endocrine Disruptors , Models, Biological , Animals , Toxicokinetics , Endocrine Disruptors/toxicity , Fishes , Risk Assessment
13.
Plant Dis ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243185

ABSTRACT

Taraxacum mongolicum is a perennial herbaceous plant in the family Asteraceae, with a high edible and medicinal value and is widely planted in China. In August 2022, leaf spots were found on T. mongolicum in Tianjiazhai Town, Xining City, Qinghai Province, China (36°27'17.65″N, 101°47'19.65E, elevation: 2,408 m). The plants exhibited round or irregular brown spots, and the centers of some of the spots were gray (Fig. S1A). An investigation was performed over a hectare area, and the incidence of leaf spot reached 15%-30%, seriously affecting the quality and yield of T. mongolicum. Eleven T. mongolicum leaf spot samples were collected. To isolate the pathogenic fungus, approximately 0.5 cm×0.5 cm pieces of tissues were obtained using sterile scissors from the junction of infected and healthy tissues. The symptomatic leaves were surface-disinfected with 3% NaClO for 1.5 min and washed three times with sterile water. The disinfected pieces were dried and placed on water agar plates in an incubator for 2 days at 25°C. Subsequently, the leaf surface exhibited conidiophores and conidia. Eleven isolates were obtained by single spore isolation. The sparse aerial mycelia were dark grey to black brown in color on potato dextrose agar (PDA) (Fig. S2A), and produced dark, multi-septate conidia with 7-11 transverse septa and 1-2 longitudinal septa (Fig. S2C). Conidia with one or two beaks were long-ovoid, with an average length and width of 103.4 × 21.2 µm, and 80.7 × 3.9 µm of the beaks. One hundred and ten conidia were measured. The identification of 11 isolates was confirmed by multilocus sequence analyses of the internal transcribed spacer of ribosomal DNA (rDNA ITS) (White et al. 1990), and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Xu et al. 2022), actin (ACT) (Yang et al. 2020), histone 3 (HIS3) (Zheng et al. 2015), translation elongation factor 1-α (TEF1-α) (Carbone. 1999), and the second largest subunit of RNA polymerase II (RPB2) (Liu et al. 1999) genes. The sequences of all the isolates were deposited in Genbank (NCBI Accession Nos. ITS: OR105029-OR105039, ACT: OR135220-OR135230, GAPDH: OR135231-OR135241, HIS3: OR122992-OR123002, TEF1-α: PP055972-PP055982, and RPB2: PP055983-PP055993), and the sequence similarity of ITS, ACT, GAPDH, HIS3,TEF1-α and RPB2 were 100%, 98%, 100%, 99%, 100%, and 99% to the sequences of Alternaria solani, respectively. Combined sequences of ITS, GAPDH, TEF1-α, and RPB2 genes were concatenated and a maximum parsimony tree was constructed with PAUP* v. 4.0 alpha. The results indicated that 11 isolates were clustered together with A. solani (Fig. S2D). Therefore, 11 isolates were identified as A. solani based on their morphological and molecular characteristics. Eleven isolates were inoculated on their host to perform Koch's postulates. The isolates were grown on PDA for six days. Healthy one month old T. mongolicum seedlings were planted in 10 cm flowerpots (Fig. S1B) or the seedlings were moved to Petri dish (Fig. S1C), and their leaves were inoculated with 5 mL of hyphae suspension by smearing method. In addition, seedlings of the same age were treated with sterile water to serve as the control. The inoculated seedlings were moved into an artificial climatic box at 25℃, relative humidity was 70%, with 12 h light/12 h dark condition. Totally 80 seedlings were inoculated with isolates and 15 were used as the control. After 7 days, similar symptoms were observed on the plants inoculated with isolates, while control plants did not produce symptoms. The assays were conducted three times. Furthermore, isolates were re-isolated from the symptomatic leaves, and the colonial morphology was the same as the original isolates (Fig S2 A and B). The recovered isolates were identified as A. solani by amplifying and sequencing a portion of the HIS3 gene. Alternaria solani has been previously reported to cause early blight of potato and other Solanum crops (van der Waals et al. 2004; Zheng et al. 2015). To our knowledge, this is the first report of A. solani causing leaf spot of T. mongolicum in China. This disease must be considered in management practices, and our finding provided a basis for disease prevention and management.

14.
Comput Biol Med ; 169: 107911, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160501

ABSTRACT

Extracting expressive molecular features is essential for molecular property prediction. Sequence-based representation is a common representation of molecules, which ignores the structure information of molecules. While molecular graph representation has a weak ability in expressing the 3D structure. In this article, we try to make use of the advantages of different type representations simultaneously for molecular property prediction. Thus, we propose a fusion model named DLF-MFF, which integrates the multi-type molecular features. Specifically, we first extract four different types of features from molecular fingerprints, 2D molecular graph, 3D molecular graph and molecular image. Then, in order to learn molecular features individually, we use four essential deep learning frameworks, which correspond to four distinct molecular representations. The final molecular representation is created by integrating the four feature vectors and feeding them into prediction layer to predict molecular property. We compare DLF-MFF with 7 state-of-the-art methods on 6 benchmark datasets consisting of multiple molecular properties, the experimental results show that DLF-MFF achieves state-of-the-art performance on 6 benchmark datasets. Moreover, DLF-MFF is applied to identify potential anti-SARS-CoV-2 inhibitor from 2500 drugs. We predict probability of each drug being inferred as a 3CL protease inhibitor and also calculate the binding affinity scores between each drug and 3CL protease. The results show that DLF-MFF product better performance in the identification of anti-SARS-CoV-2 inhibitor. This work is expected to offer novel research perspectives for accurate prediction of molecular properties and provide valuable insights into drug repurposing for COVID-19.


Subject(s)
COVID-19 , Deep Learning , Humans , Antiviral Agents , Benchmarking , Drug Repositioning , SARS-CoV-2
15.
Int J Ophthalmol ; 16(12): 1952-1961, 2023.
Article in English | MEDLINE | ID: mdl-38111929

ABSTRACT

AIM: To investigate the genetic and clinical characteristics of patients with a large heterozygous copy number deletion on 7q31.31-7q31.32. METHODS: A family with familial exudative vitreoretinopathy (FEVR) phenotype was included in the study. Whole-exome sequencing (WES) was initially used to locate copy number variations (CNVs) on 7q31.31-31.32, but failed to detect the precise breakpoint. The long-read sequencing, Oxford Nanopore sequencing Technology (ONT) was used to get the accurate breakpoint which is verified by quantitative real-time polymerase chain reaction (QPCR) and Sanger Sequencing. RESULTS: The proband, along with her father and younger brother, were found to have a heterozygous 4.5 Mb CNV deletion located on 7q31.31-31.32, which included the FEVR-related gene TSPAN12. The specific deletion was confirmed as del(7)(q31.31q31.32)chr7:g.119451239_123956818del. The proband exhibited a phase 2A FEVR phenotype, characterized by a falciform retinal fold, macular dragging, and peripheral neovascularization with leaking of fluorescence. These symptoms led to a significant decrease in visual acuity in both eyes. On the other hand, the affected father and younger brother showed a milder phenotype. CONCLUSION: The heterozygous CNV deletion located on 7q31.31-7q31.32 is associated with the FEVR phenotype. The use of long-read sequencing techniques is essential for accurate molecular diagnosis of genetic disorders.

16.
Article in English | WPRIM (Western Pacific) | ID: wpr-627489

ABSTRACT

Water quality in the dental unit waterlines (DUWLs) is important to the patients and dental health care personnel as they are at risk of being infected with opportunistic pathogens such as Pseudomonas or Legionella species. In this study, a total of 86 samples were collected from DUWLs of 19 dental units in 11 Malaysian Armed Forces dental centres (MAFDC). 350 ml water sample was collected in sterile thiosulphite bags from the outlets of 3–way syringe, high speed handpiece, scaler, cup filler, independent water reservoir or the tap of the same surgery respectively. Samples were transported to the laboratory within 24 hours and kept in the refrigerator at 40C. 100ml of each sample was filtered through a 0.45 μm polycarbonate membrane filter. The filter was then inoculated onto plate count agar and incubated at 370 C for 24 hours, after which the formed colonies were enumerated. Another separate 100ml of water sample was poured onto buffered charcoal yeast extract agar and cetrimide agar to culture Legionnella and Pseudomonas respectively. Identification of these bacteria were confirmed by polymerase chain reaction and sequencing. Pseudomonas aeruginosa was detected in 9.5% of the samples but Legionnella was not detected in any of the samples. 77% of the samples met American Dental Association (ADA) recommendation of less than 200 cfu/ml. The result of this study showed that it is difficult if not impossible to eliminate biofilm from the DUWLs. Regular monitor of water quality from DUWL is required to maximise the health of the dental patients and dental health care personnel.

SELECTION OF CITATIONS
SEARCH DETAIL