Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Langmuir ; 40(12): 6198-6211, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38468362

ABSTRACT

Titanium silicon molecular sieve (TS-1) is an oxidation catalyst that possesses a long lifetime of charge transfer excited state, high Ti utilization efficiency, large specific surface area, and good adsorption property; therefore, TS-1 acts as a Ti-based photocatalyst candidate. In this work, TS-1 coupled Bi2MoO6 (TS-1/BMO) photocatalysts were fabricated via a facile hydrothermal route. Interestingly, the optimized TS-1/BMO-1.0 catalyst exhibited a decent photodegradation property toward tetracycline hydrochloride (85.49% in 120 min) under the irradiation of full spectrum light, which were 4.38 and 1.76 times compared to TS-1 and BMO, respectively. The enhanced photodegradation property of the TS-1/BMO-1.0 catalyst could be attributed to the reinforced light-harvesting capacity of the photocatalyst, high charge mobility, and suitable band structure for tetracycline hydrochloride degradation. In addition, the mechanism of photocatalytic degradation of tetracycline hydrochloride by the TS-1/BMO-1.0 catalyst was reasonably proposed based on the band structure, trapping, and ESR tests. This research provided feasible ideas for the design and construction of high-efficiency photocatalysts for contaminant degradation.

2.
J Am Chem Soc ; 143(34): 13731-13737, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34410122

ABSTRACT

The controlling synthesis of novel nanoclusters of noble metals (Au, Ag) and the determination of their atomically precise structures provide opportunities for investigating their specific properties and applications. Here we report a novel silver nanocluster [Ag307Cl62(SPhtBu)110] (Ag307) whose structure is determined by X-ray single crystal diffraction. The structure analysis shows that nanocluster Ag307 contains a Ag167 core, a surface shell of [Ag140Cl2S110], and a Cl60 intermediate layer located between Ag167 and [Ag140Cl2S110]. It is a first example that such many chlorides are intercalated into a Ag nanocluster. Chlorides are released in situ from solvent CHCl3. Nanocluster Ag307 exhibits superstability. Differential pulse voltammetry experiment reveals that Ag307 has continuous charging/discharging behavior with a capacitance value of 1.39 aF, while the Ag307 has a surface plasmonic feature. These characteristics show that Ag307 is of metallic behavior. However, its electron paramagnetic resonance (EPR) spectra display a spin magnetic behavior which could be originated from the unpassivated dangling bonds of surface atoms. The direct capture of EPR signals can be attributed to the Cl- intercalating layer which partly suppresses the electronic interactions between core and surface atoms, resulting in the relatively independent electronic states for core and surface atoms.

3.
Nanoscale ; 10(2): 515-519, 2018 Jan 03.
Article in English | MEDLINE | ID: mdl-29239443

ABSTRACT

A first and stable Ag-P superatom nanocluster [Ag15(N-triphos)4(Cl4)](NO3)3 (1) has been successfully synthesized and characterized. X-ray analysis shows that this Ag15 cluster has a hexacapped body-centered cubic (bcc) framework which is consolidated by four tripodal N-triphos ligands. The identity of 1 is confirmed by high resolution ESI-MS. Cluster 1 has an electronic and geometric shell closure structure with 8 free electrons, matching the stability idea of superatom theory for a nanocluster. DFT calculation of this Ag15 cluster reveals the superatom feature with a 1S21P6 configuration. The chelation of multidentate phosphines enhances the stability of this Ag15 cluster. The AgAg distances between the centered and the vertical Ag atoms of this bcc (Ag@Ag8) are in the range of 2.57-2.71 Å, and the distances between the face-capped and the vertical silver atoms are in the range of 2.84-2.92 Å, showing strong AgAg interactions within this cluster core. This superatom complex exhibits a relatively high thermal and photolytic stability.

4.
PLoS One ; 11(10): e0164776, 2016.
Article in English | MEDLINE | ID: mdl-27755580

ABSTRACT

Plant growth can be promoted by the application of apple fruit fermentation (AFF), despite unclear of the underlying mechanisms, the effects involved in AFF on rhizosphere microorganisms have been hypothesized. We investigated the consequences of applying AFF alone or in combination with Bacillus licheniformis to strawberry tissue culture seedlings in vitro, the analyses of Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rDNA were performed to determine AFF effects on rhizosphere. Moreover, the growth index and antioxidant enzyme activities were determined 30 days after treatments. We identified five dominant bacteria in AFF: Coprinus atramentarius, Bacillus megaterium, Bacillus licheniformis, Weissella and B. subtilis. The greatest number of bacterial species were observed in the rhizosphere of control matrix (water treated), and the lowest diversity appeared in the rhizosphere soil treated with 108 cfu/mL B. licheniformis alone. Combining AFF plus B. licheniformis in one treatment resulted in the largest leaf area, plant height, root length, plant weight, and the markedly higher activities of antioxidant enzymes. We conclude that a combination of AFF plus B. licheniformis treatment to matrix can increase antioxidant enzymes activities in strawberry seedlings, optimize the status of rhizosphere microbial, and promote plant growth.


Subject(s)
Bacteria/isolation & purification , Fragaria/microbiology , Malus/metabolism , Soil Microbiology , Antioxidants/metabolism , Bacillus licheniformis/growth & development , Bacteria/classification , Bacteria/genetics , DNA, Bacterial/isolation & purification , DNA, Bacterial/metabolism , Denaturing Gradient Gel Electrophoresis , Fragaria/enzymology , Fragaria/growth & development , Fruit/chemistry , Fruit/metabolism , Malus/chemistry , Oxidoreductases/metabolism , Phylogeny , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Proteins/metabolism , Plant Roots/microbiology , Polymerase Chain Reaction , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Rhizosphere , Seedlings/enzymology , Seedlings/growth & development , Seedlings/microbiology , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL