Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Small ; : e2306867, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38085130

ABSTRACT

Endowing aqueous supercapacitors (SCs) with high voltage is of great practical significance, but it is restricted by the water decomposition reaction occurring in the electrodes. Here, a novel surface treatment strategy is proposed to inhibit the hydrogen evolution reaction/oxygen evolution reaction at the cathode and anode by forming a passivation layer at the whole electrode surface, which widens the electrochemical stability window of the electrode and working voltage of the aqueous SCs. In addition, the cathode overpotential is increased from -1.3 to -1.48 V, and the anode is expanded from 1.42 to 1.59 V. Importantly, the aqueous SCs can work stably at 3 V operating voltage, enabling the coulombic efficiency and capacitance retention of the optimized SCs is 97% and 96% after 5000 cycles, respectively. This strategy of surface modification provides effective guidance to achieve high-voltage aqueous energy storage devices.

2.
J Colloid Interface Sci ; 650(Pt A): 659-668, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37437445

ABSTRACT

All-solid-state lithium-sulfur batteries (ASSLSBs) would be a promising candidate for the next-generation batteries due to the utilization of energy-dense electrodes and the non-flammable oxide solid-state electrolytes (SSEs), but still face great challenges such as low ionic conductivity of SSEs, poor interfacial contact and lithium (Li) dendrite propagation. Herein, we regulated the crystallinity degrees of the large-scale-fabricated Li1.5Al0.5Ge1.5(PO4)3 (LAGP) SSEs and explored the critical role of crystallinity optimization in reinforcing the basic properties of LAGP, developing a fundamental explanation for the inherent relation between the crystallinity and the performance of ASSLSBs. Benefiting from the optimized crystallinity (∼99.9 %), the large-scale-fabricated LAGP not only realizes the low surface roughness and high ionic conductivity (2.11 × 10-4 S cm-1) to improve interfacial contact and reduce resistance in ASSLSBs, but also possesses the dense internal structure with low porosity (1.49 %) to physically resist dendritic propagation and penetration. Consequently, the ASSLSB with the optimized LAGP delivers a high reversible capacity of 647.9 mAh/g even after 150 cycles at 0.1 C. This work confirms the significance of crystallinity in understanding the working mechanisms of oxide SSEs and developing future high-performance ASSLSBs.

3.
ChemSusChem ; 16(11): e202202174, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-36877185

ABSTRACT

Polypyrrole (PPy), as a representative p-type conductive polymer, attracts wide attention for energy storage materials. However, the sluggish reaction kinetics and low specific capacity of PPy impede its application in high-power lithium-ion batteries (LIBs). Herein, tubular PPy with chloride and methyl orange (MO) anionic dopants is synthesized and investigated as an anode for LIBs. The Cl- and MO anionic dopants can increase the ordered aggregation and the conjugation length of pyrrolic chains, forming plentiful conductive domains and affecting the conduction channel inside the pyrrolic matrix, thereby achieving fast charge transfer and Li+ ion diffusion, low ion transfer energy barriers, and rapid reaction kinetics. On account of the above synergistic effect, PPy electrodes deliver a high specific capacity of 2067.8 mAh g-1 at 200 mA g-1 and a remarkable rate capacity of 1026 mAh g-1 at 10 A g-1 , realizing high energy density (724 Wh kg-1 ) and power density (7237 W kg-1 ) simultaneously.


Subject(s)
Chlorides , Lithium , Polymers , Pyrroles , Electrodes , Halogens
4.
ChemSusChem ; 16(9): e202202358, 2023 May 05.
Article in English | MEDLINE | ID: mdl-36732888

ABSTRACT

Organic electrode materials (OEMs) have shown enormous potential in ion batteries because of their varied structural components and adaptable construction. As a brand-new energy-storage device, rechargeable aluminum-ion batteries (RAIBs) have also received a lot of attention due to their high safety and low cost. OEMs are expected to stand out among many traditional RAIB cathode materials. However, how to improve the electrochemical performance of OEMs in RAIBs on a laboratory scale is still challenging. This work reviews and discusses the uses of conductive polymers, carbonyl compounds, imine polymers, polycyclic aromatic hydrocarbons, organic frameworks, and other organic materials as the cathodes of RAIBs, as well as energy-storage mechanisms and research progress. It is hoped that this Review can provide the design guidelines for organic cathode materials with high capacity and great stability used in aluminum-organic batteries and develop more efficient organic energy storage cathodes.

5.
ACS Appl Mater Interfaces ; 14(16): 18360-18372, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35413174

ABSTRACT

Solid polymer electrolytes (SPEs) possess improved thermal and mechanical stability as safe energy storage devices. However, their low ion mobilities and poor electrochemical stabilities still hinder the wide industrial application of SPEs. Herein, we introduce an SPE design that provides an enormous number of electrochemically stable pathways and space for lithium-ion transport, blending polymer (polydopamine) hollow nanospheres with an inactive inorganic template into a poly(ethylene oxide) (PEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) based SPE. Hollow silica acts as a template for polydopamine processing a large contact area with the polymer electrolyte, and the interface between the polymer electrolyte and hollow composite fillers provides amounts of ion transport channels. In addition, theoretical calculations reveal a strong adsorption between polydopamine and TFSI-, which suppresses the TFSI- motion and meanwhile facilitates the selective Li+ transport. The hollow polydopamine can serve as a versatile platform for anion trapping and has large compatible and stable depression for a well-defined ion transfer interface layer, forming a three-in-one nanocomposite for the enhancement of ionic conductivity with no sacrifice of the mechanical properties. Experimental data confirmed the high mobility of ions within the composite electrolyte with an ionic conductivity of 0.189 mS cm-1 in comparison to the SPE without additives (0.105 mS cm-1) at 60 °C. The mobility of the Li+ increases after adding the polymer-coated inorganic additives, associated with a noticeable enlargement of the electrochemical window. Furthermore, an all-solid-state Li/LiFePO4 battery with a hollow polydopamine nanoparticle-polymer composite electrolyte shows long life, high reversible capacity (134.9 mAh g-1), and high capacity retention (97.2%) after 205 cycles at 0.2 C.

6.
Int J Anal Chem ; 2019: 2879074, 2019.
Article in English | MEDLINE | ID: mdl-31814828

ABSTRACT

Defoliants carried by cotton fiber could harm production workers and consumers through respiratory and dermal exposure. This study was carried out to evaluate the dissipation behavior of four commonly used defoliants tribufos, diuron, thidiazuron, and ethephon in cotton fiber during field stage and also in cotton scouring using liquid chromatography and gas chromatography. Field trials showed that although all the defoliants dissipated fast, however, the fiber from the tribufos and ethephon applied field had considerable potential to exceed the maximum residue limit when the fiber was harvested at common intervals after application of defoliants. The defoliant residues could be removed completely from the defoliant-carrying cotton textiles during alkaline scouring. The results indicated that attention should be paid to the risk of occupational exposure to these defoliants rather than consumer exposure. Fiber harvest on the tribufos and ethephon applied fields is recommended after a 1-week delay in order to reduce the residues to an acceptable level.

7.
ACS Appl Mater Interfaces ; 11(48): 45338-45344, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31702886

ABSTRACT

Resilient ceramic aerogels exhibit great potential for applications in harsh environments owing to their unique combination of ultrahigh porosity, lightweight, reversible compressibility, and good thermal and chemical stabilities. However, their applications are severely restricted by the limited size and low yield due to their complicated and time-consuming synthetic procedures. Herein, we developed an efficient method for large-scale production of resilient SiC nanowire aerogels (SiC NWAGs) with tunable densities and desired shapes. The as-synthesized SiC NWAGs displayed excellent high-temperature stability (the maximum working temperature in Ar and air can reach to 1400 and 1000 °C, respectively), outstanding flame-erosion resistance and low thermal conductivity (25 mW m-1 K-1). The easy fabrication of such ceramic aerogel on a large scale will pave the way for the widespread applications of ceramic aerogels.

8.
Nanoscale ; 11(19): 9556-9562, 2019 May 16.
Article in English | MEDLINE | ID: mdl-31049544

ABSTRACT

Research on VS4 is lagging due to the difficulty in its tailored synthesis. Herein, unique architecture design of one-dimensional VS4 nanowires anchored on reduced graphene oxide is demonstrated via a facile solvothermal synthesis. Different amounts of reduced graphene oxide with VS4 are synthesized and compared regarding their rate capability and cycling stability. Among them, VS4 nanowires@15 wt% reduced graphene oxide present the best electrochemical performance. The superior performance is attributed to the optimal amount of reduced graphene oxide and one-dimensional VS4 nanowires based on (i) the large surface area that could accommodate volume changes, (ii) enhanced accessibility of the electrolyte, and (iii) improvement in electrical conductivity. In addition, kinetic parameters derived from electrochemical impedance spectroscopy spectra and sweep rate dependent cyclic voltammetry curves such as charge transfer resistances and Li+ ion apparent diffusion coefficients both support this claim. The diffusion coefficient is calculated to be 1.694 × 10-12 cm2 s-1 for VS4 nanowires/15 wt% reduced graphene oxide, highest among all samples.

9.
J Environ Sci Health B ; 54(1): 70-75, 2019.
Article in English | MEDLINE | ID: mdl-30633718

ABSTRACT

Pesticides carried by cotton fiber are potential risk for production workers and consumers. Dissipation behaviour of a commonly used cotton pesticide profenofos in cotton fiber during growing period and scouring treatment was investigated. The results showed that profenofos in the fiber from the pre-opened and post-opened bolls both decreased to undetectable amounts 21 days after pesticide application. However, a minority of profenofos was converted to a strongly irritant compound, 4-bromo-2-chlorophenol and retained a non-negligible amount in cotton fiber even after 28 days. Profenofos and its degradation product could be completely removed during the conventional cotton scouring process. The degradation half-time of profenofos in scouring bath was only 3.0 min, and the degradation product was also 4-bromo-2-chlorophenol. Cotton products made of profenofos-carrying fiber are safe; however, the scouring waste should be detoxicated before discharge due to the accumulation of 4-bromo-2-chlorophenol in the scouring bath. These results could be useful for evaluating the risk of cotton fiber from the profenofos applied fields.


Subject(s)
Cotton Fiber/analysis , Insecticides/analysis , Organothiophosphates/analysis , Organothiophosphates/pharmacokinetics , Biodegradation, Environmental , Chlorophenols/analysis , Chlorophenols/pharmacokinetics , Humans
10.
ACS Appl Mater Interfaces ; 10(17): 14727-14734, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29624045

ABSTRACT

VS4 anode materials with controllable morphologies from hierarchical microflower, octopus-like structure, seagrass-like structure to urchin-like structure have been successfully synthesized by a facile solvothermal synthesis approach using different alcohols as solvents. Their structures and electrochemical properties with various morphologies are systematically investigated, and the structure-property relationship is established. Experimental results reveal that Li+ ion storage behavior in VS4 significantly depends on physical features such as the morphology, crystallite size, and specific surface area. According to this study, electrochemical performance degrades on the order of urchin-like VS4 > octopus-like VS4 > seagrass-like VS4 > flower-like VS4. Among them, urchin-like VS4 demonstrates the best electrochemical performance benefiting from its peculiar structure which possesses large surface area that accommodates the volume change to a certain extent, and single-crystal thorns that provide fast electron transportation. Kinetic parameters derived from EIS spectra and sweep-rate-dependent CV curves, such as charge-transfer resistances, Li+ ion apparent diffusion coefficients and stored charge ratio of capacitive and intercalation contributions, both support this claim well. In addition, the EIS measurement was conducted during the first discharge/charge process to study the solid electrolyte interface (SEI) formation on urchin-like VS4 and kinetics behavior of Li+ ion diffusion. A better fundamental understanding on Li+ storage behavior in VS4 is promoted, which is applicable to other vanadium-based materials as well. This study also provides invaluable guidance for morphology-controlled synthesis tailored for optimal electrochemical performance.

11.
ACS Nano ; 12(4): 3103-3111, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29513010

ABSTRACT

Ultralight ceramic aerogels with the property combination of recoverable compressibility and excellent high-temperature stability are attractive for use in harsh environments. However, conventional ceramic aerogels are usually constructed by oxide ceramic nanoparticles, and their practical applications have always been limited by the brittle nature of ceramics and volume shrinkage at high temperature. Silicon carbide (SiC) nanowire offers the integrated properties of elasticity and flexibility of one-dimensional (1D) nanomaterials and superior high-temperature thermal and chemical stability of SiC ceramics, which makes it a promising building block for compressible ceramic nanowire aerogels (NWAs). Here, we report the fabrication and properties of a highly porous three-dimensional (3D) SiC NWA assembled by a large number of interweaving 3C-SiC nanowires of 20-50 nm diameter and tens to hundreds of micrometers in length. The SiC NWA possesses ultralow density (∼5 mg cm-3), excellent mechanical properties of large recoverable compression strain (>70%) and fatigue resistance, refractory property, oxidation and high-temperature resistance, and thermal insulating property (0.026 W m-1 K-1 at room temperature in N2). When used as absorbents, the SiC NWAs exhibit an adsorption selectivity of low-viscosity organic solvents with high absorption capacity (130-237 g g-1). The successful fabrication of such an attractive material may provide promising perspectives to the design and fabrication of other compressible and multifunctional ceramic NWAs.

SELECTION OF CITATIONS
SEARCH DETAIL
...