Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38793921

ABSTRACT

In recent years, the occurrence of high-voltage cable buffer layer ablation faults has become frequent, posing a serious threat to the safe and stable operation of cables. Failure to promptly detect and address such faults may lead to cable breakdowns, impacting the normal operation of the power system. To overcome the limitations of existing methods for identifying buffer layer ablation faults in high-voltage cables, a method for identifying buffer layer ablation faults based on frequency domain impedance spectroscopy and artificial intelligence is proposed. Firstly, based on the cable distributed parameter model and frequency domain impedance spectroscopy, a mathematical model of the input impedance of a cable containing buffer layer ablation faults is derived. Through a simulation, the input impedance spectroscopy at the first end of the cables under normal conditions, buffer layer ablation, local aging, and inductive faults is performed, enabling the identification of inductive and capacitive faults through a comparative analysis. Secondly, the frequency domain amplitude spectroscopy of the buffer layer ablation and local aging faults are used as datasets and are input into a neural network model for training and validation to identify buffer layer ablation and local aging faults. Finally, using multiple evaluation metrics to assess the neural network model validates the superiority of the MLP neural network in cable fault identification models and experimentally confirms the effectiveness of the proposed method.

2.
Heliyon ; 10(1): e24027, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38268583

ABSTRACT

Plant rotation is a common practice in upland rice production. However, the effects of plant rotation on the interactions between rice plants, soil and underground ecosystems need to be studied further. Here, quantitative PCR and high-throughput pyrosequencing of the ITS region was applied to investigate the fungal abundance, diversity, and composition of fungal functional guilds in rice field soils and after different rotation practices ((rice-fallow (RF), rice-Chinese milk vetch (RV) and rice-wheat (RW)) and their relationship with rice yields. The results showed that the six-year RV and RW rotations increased fungal abundance by 42.7 %-69.2 % relative to RF, but decreased the soil bacterial-to-fungi ratio and fungal diversity. For the functional guilds, RV rotation significantly increased the relative abundance of soil saprotrophs and pathotrophs by 73.30 % and 32.94 %, respectively, while that of symbiotrophs was decreased by 35.96 %, compared to RF. RW rotation was found to significantly decrease all three fungal functional guilds, but increased the symbiotroph-saprotroph ratio. A structure equal model analysis indicated that the diversity of saprotrophs was significantly and negatively correlated with rice yield. Altogether, this work provides a detailed description of how the soil fungal community, including saprotrophic, symbiotrophic and pathotrophic functional guilds, responded to different upland rice rotation practices after eight years of application.

3.
Front Microbiol ; 14: 1161983, 2023.
Article in English | MEDLINE | ID: mdl-37275141

ABSTRACT

Microbial diversity is an important indicator of soil fertility and plays an indispensable role in farmland ecosystem sustainability. The short-term effects of fertilization and rhizobium inoculation on soil microbial diversity and community structure have been explored extensively; however, few studies have evaluated their long-term effects. Here, we applied quantitative polymerase chain reaction (qPCR) and amplicon sequencing to characterize the effect of 10-year fertilizer and rhizobium inoculation on bacterial communities in soybean bulk and rhizosphere soils at the flowering-podding and maturity stages. Four treatments were examined: non-fertilization control (CK), phosphorus and potassium fertilization (PK), nitrogen and PK fertilization (PK + N), and PK fertilization and Bradyrhizobium japonicum 5821 (PK + R). Long-term co-application of rhizobium and PK promoted soybean nodule dry weight by 33.94% compared with PK + N, and increased soybean yield by average of 32.25%, 5.90%, and 5.00% compared with CK, PK, and PK + N, respectively. The pH of PK + R was significantly higher than that of PK and PK + N at the flowering-podding stage. The bacterial abundance at the flowering-podding stage was positively correlated with soybean yield, but not at the maturity stage. The significant different class Gemmatimonadetes, and the genera Gemmatimonas, and Ellin6067 in soil at the flowering-podding stage were negatively correlated with soybean yield. However, the bacterial community at class and genus levels at maturity had no significant effect on soybean yield. The key bacterial communities that determine soybean yield were concentrated in the flowering-podding stage, not at maturity stage. Rhizosphere effect, growth period, and treatment synergies resulted in significant differences in soil bacterial community composition. Soil organic matter (OM), total nitrogen (TN), pH, and available phosphorus (AP) were the main variables affecting bacterial community structure. Overall, long-term co-application of rhizobium and fertilizer not only increased soybean yield, but also altered soil bacterial community structure through niche reconstruction and microbial interaction. Rhizobium inoculation plays key role in reducing nitrogen fertilizer application and promoting sustainable agriculture practices.

4.
Folia Microbiol (Praha) ; 68(6): 991-998, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37266892

ABSTRACT

In the present work, we characterized in detail strain CM-3-T8T, which was isolated from the rhizosphere soil of strawberries in Beijing, China, in order to elucidate its taxonomic position. Cells of strain CM-3-T8T were Gram-negative, non-spore-forming, aerobic, short rod. Growth occurred at 25-37 °C, pH 5.0-10.0, and in the presence of 0-8% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CM-3-T8T formed a stable clade with Lysobacter soli DCY21T and Lysobacter panacisoli CJ29T, with the 16S rRNA gene sequence similarities of 98.91% and 98.50%. The average nucleotide identity and digital DNA-DNA hybridization values between strain SG-8 T and the two reference type strains listed above were 76.3%, 79.6%, and 34.3%, 27%, respectively. The DNA G + C content was 68.4% (mol/mol). The major cellular fatty acids were comprised of C15:0 iso (36.15%), C17:0 iso (8.40%), and C11:0 iso 3OH (8.28%). The major quinone system was ubiquinone Q-8. The major polar lipids were phosphatidylethanolamine (PE), phosphatidylethanolamine (PME), diphosphatidylglycerol (DPG), and aminophospholipid (APL). On the basis of phenotypic, genotypic, and phylogenetic evidence, strain CM-3-T8T (= ACCC 61714 T = JCM 34576 T) represents a new species within the genus Lysobacter, for which the name Lysobacter changpingensis sp. nov. is proposed.


Subject(s)
Fragaria , Lysobacter , Phospholipids/chemistry , Fragaria/genetics , Phosphatidylethanolamines , Lysobacter/genetics , Phylogeny , Rhizosphere , RNA, Ribosomal, 16S/genetics , Soil , DNA, Bacterial/genetics , DNA, Bacterial/chemistry , Fatty Acids/analysis , China , Sequence Analysis, DNA , Bacterial Typing Techniques
5.
ACS Nano ; 17(13): 12225-12233, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37358469

ABSTRACT

Metal infiltration from an acid solution of a metal precursor into the poly(2-vinylpyridine) (P2VP) microdomains of a polystyrene-b-P2VP block copolymer is shown to reduce the uptake of solvent vapor during a subsequent solvent annealing process, locking the morphology of the self-assembled microdomains. The amount of metal, here Pt, incorporated into the P2VP increases with both metal precursor [PtCl4]2- and hydrochloric acid concentrations, reaching 0.83 Pt atom per pyridine unit. The metal is then exfiltrated using a KOH + ethylenediaminetetraacetic acid disodium salt dihydrate (Na2EDTA) complexing solution, which restores solvent uptake and unlocks the morphology. The reversibility of the metal infiltration and morphology locking is demonstrated in a multistage annealing process and is confirmed for Fe as well as Pt. Reversible locking and unlocking of block copolymer microdomain morphologies expand their utility for nanofabrication processes by allowing the morphology to be fixed during subsequent process steps.

6.
Sci Rep ; 13(1): 8234, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37217543

ABSTRACT

Ammonia-oxidizing archaea and bacteria (AOA and AOB, respectively) are important intermediate links in the nitrogen cycle. Apart from the AOA and AOB communities in soil, we further investigated co-occurrence patterns and microbial assembly processes subjected to inorganic and organic fertilizer treatments for over 35 years. The amoA copy numbers and AOA and AOB communities were found to be similar for the CK and organic fertilizer treatments. Inorganic fertilizers decreased the AOA gene copy numbers by 0.75-0.93-fold and increased the AOB gene copy numbers by 1.89-3.32-fold compared to those of the CK treatment. The inorganic fertilizer increased Nitrososphaera and Nitrosospira. The predominant bacteria in organic fertilizer was Nitrosomonadales. Furthermore, the inorganic fertilizer increased the complexity of the co-occurrence pattern of AOA and decreased the complexity pattern of AOB comparing with organic fertilizer. Different fertilizer had an insignificant effect on the microbial assembly process of AOA. However, great difference exists in the AOB community assembly process: deterministic process dominated in organic fertilizer treatment and stochastic processes dominated in inorganic fertilizer treatment, respectively. Redundancy analysis indicated that the soil pH, NO3-N, and available phosphorus contents were the main factors affecting the changes in the AOA and AOB communities. Overall, this findings expanded our knowledge concerning AOA and AOB, and ammonia-oxidizing microorganisms were more disturbed by inorganic fertilizers than organic fertilizers.


Subject(s)
Ammonia , Fertilizers , Fertilizers/analysis , Soil Microbiology , Oxidation-Reduction , Phylogeny , Bacteria/genetics , Archaea/genetics , Soil/chemistry , Fertilization
7.
Genes (Basel) ; 13(11)2022 10 22.
Article in English | MEDLINE | ID: mdl-36360159

ABSTRACT

Plant growth-promoting rhizobacteria (PGPR) are widely used to improve soil nutrients and promote plant growth and health. However, the growth-promoting effect of a single PGPR on plants is limited. Here, we evaluated the effect of applying rhizobium Bradyrhizobium japonicum 5038 (R5038) and two PGPR strains, Bacillus aryabhattai MB35-5 (BA) and Paenibacillus mucilaginosus 3016 (PM), alone or in different combinations on the soil properties and rhizosphere bacterial community composition of soybean (Glycine max). Additionally, metagenomic sequencing was performed to elucidate the profile of functional genes. Inoculation with compound microbial inoculant containing R5038 and BA (RB) significantly improved nodule nitrogenase activity and increased soil nitrogen content, and urease activity increased the abundance of the nitrogen cycle genes and Betaproteobacteria and Chitinophagia in the rhizosphere. In the treatment of inoculant-containing R5038 and PM (RP), significant changes were found for the abundance of Deltaproteobacteria and Gemmatimonadetes and the phosphorus cycle genes, and soil available phosphorus and phosphatase activity were increased. The RBP inoculants composed of three strains (R5038, BA and PM) significantly affected soybean biomass and the N and P contents of the rhizosphere. Compared with RB and RP, RBP consistently increased soybean nitrogen content, and dry weight. Overall, these results showed that several PGPR with different functions could be combined into composite bacterial inoculants, which coordinately modulate the rhizosphere microbial community structure and improve soybean growth.


Subject(s)
Bacillus , Bradyrhizobium , Paenibacillus , Bradyrhizobium/genetics , Glycine max , Plant Roots/microbiology , Soil/chemistry , Paenibacillus/genetics , Phosphorus , Nitrogen
8.
Article in English | MEDLINE | ID: mdl-35939329

ABSTRACT

A novel Gram-stain-positive, aerobic, non-motile and rod-shaped bacterium, designated strain NC76-1T, was isolated from soil from a field that had undergone seven years continuous maize cropping from Liuba town located in Zhangye city, Gansu province, PR China. Colonies of strain NC76-1T were white, opaque and circular with a convex shape. The isolate was found to be able to grow at 10-40 °C (optimum 30 °C), pH 6.0 to 12.0 (optimum 7.0-8.0) and with 0-5.0 % (w/v) NaCl (optimum 0%). On the basis of the results of 16S rRNA gene sequence analysis, the strain fell within the clade of the genus Leucobacter, showing the highest sequence similarities with Leucobacter iarius 40T (97.4%), Leucobacter aridicollis CIP 108388T (97.0%), Leucobacter chromiireducens subsp. solipictus TAN 31504T (96.7%) and Leucobacter denitrificans M1T8B10T (96.7%). The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between NC76-1T and its closest relatives, L. iarius 40T, L. aridicollis CIP 108388T, L. chromiireducens subsp. solipictus TAN 31504T and L. denitrificans M1T8B10T were ≤73.5 % and 20.3%, respectively. The genomic DNA G+C content of NC76-1T was 61.5 mol%. It presented MK-11 as the predominant menaquinone. The major cellular fatty acids were anteiso-C15 : 0 (49.2 %) and iso-C16 : 0 (35.7%). The major polar lipids were found to be diphosphatidyglycerol, phosphatidylglycerol, phosphatidylethanolamine, aminoglycolipid, five glycolipid and one unidentified lipids. The cell wall amino acids were 2,4-diaminobutyric acid, alanine, glutamic acid, glycine and threonine. On the basis of the phylogenetic, phenotypic and chemotaxonomic characteristics, strain NC76-1T is concluded to represent a novel species within the genus Leucobacter, for which the name Leucobacter chinensis sp. nov. is proposed. The type strain is NC76-1T (GDMCC 1.2286T= JCM 34651T).


Subject(s)
Actinomycetales , Zea mays , Actinobacteria , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil
9.
Front Microbiol ; 13: 846359, 2022.
Article in English | MEDLINE | ID: mdl-35369449

ABSTRACT

Rhizosphere microbial communities are vital for plant growth and soil sustainability; however, the composition of rhizobacterial communities, especially the assembly process and co-occurrence pattern among microbiota after the inoculation of some beneficial bacteria, remains considerably unclear. In this study, we investigated the structure of rhizomicrobial communities, their assembly process, and interactions contrasting when Bradyrhizobium japonicum 5038 and Bacillus aryabhattai MB35-5 are co-inoculated or Bradyrhizobium japonicum 5038 mono-inoculated in black and cinnamon soils of soybean fields. The obtained results indicated that the Chao and Shannon indices were all higher in cinnamon soil than that in black soil. In black soil, the co-inoculation increased the Shannon indices of bacteria comparing with that of the mono-inoculation. In cinnamon soil, the co-inoculation decreased the Chao indices of fungi comparing with that of mono-inoculation. Compared with the mono-inoculation, the interactions of microorganisms of co-inoculation in the co-occurrence pattern increased in complexity, and the nodes and edges of co-inoculation increased by 10.94, 40.18 and 4.82, 16.91% for bacteria and fungi, respectively. The co-inoculation of Bradyrhizobium japonicum 5038 and Bacillus aryabhattai MB35-5 increased the contribution of stochastic processes comparing with Bradyrhizobium japonicum 5038 inoculation in the assembly process of soil microorganisms, and owing to the limitation of species diffusion might restrict the direction of pathogenic microorganism movement. These findings support the feasibility of rebuilding the rhizosphere microbial system via specific microbial strain inoculation and provide evidence that the co-inoculation of Bradyrhizobium japonicum 5038 and Bacillus aryabhattai MB35-5 can be adopted as an excellent compound rhizobia agent resource for the sustainable development of agriculture.

10.
J Microbiol ; 60(1): 31-46, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34826097

ABSTRACT

As a microsymbiont of soybean, Bradyrhizobium japonicum plays an important role in symbiotic nitrogen fixation and sustainable agriculture. However, the survival of B. japonicum cells under water-deplete (e.g., drought) and water-replete (e.g., flood) conditions is a major concern affecting their nitrogen-fixing ability by establishing the symbiotic relationship with the host. In this study, we isolated a water stress tolerant rhizobium from soybean root nodules and tested its survival under water-deplete conditions. The rhizobium was identified as Bradyrhizobium japonicum and named strain 5038. Interestingly, both plate counting and live/dead fluorescence staining assays indicate that a number of viable but non-culturable cells exist in the culture medium upon the rehydration process which could cause dilution stress. Bradyrhizobium japonicum 5038 cells increased production of exopolysaccharide (EPS) and trehalose when dehydrated, suggesting that protective responses were stimulated. As expected, cells reduced their production upon the subsequent rehydration. To examine differential gene expression of B. japonicum 5038 when exposed to water-deplete and subsequent water-replete conditions, whole-genome transcriptional analysis was performed under 10% relative humidity (RH), and subsequent 100% RH, respectively. A total of 462 differentially expressed genes (DEGs, > 2.0-fold) were identified under the 10% RH condition, while 3,776 genes showed differential expression during the subsequent rehydration (100% RH) process. Genes involved in signal transduction, inorganic ion transport, energy production and metabolisms of carbohydrates, amino acids, and lipids were far more up-regulated than down-regulated in the 10% RH condition. Notably, trehalose biosynthetic genes (otsAB, treS, and treYZ), genes ligD, oprB, and a sigma factor rpoH were significantly induced by 10% RH. Under the subsequent 100% RH condition, genes involved in transcription, translation, cell membrane regulation, replication and repair, and protein processing were highly up-regulated. Interestingly, most of 10%-RH inducible genes displayed rehydration-repressed, except three genes encoding heat shock (Hsp20) proteins. Therefore, this study provides molecular evidence for the switch of gene expression of B. japonicum cells when encountered the opposite water availability from water-deplete to water-replete conditions.


Subject(s)
Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Water/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Glycine max/microbiology , Stress, Physiological , Transcription, Genetic , Trehalose/metabolism
11.
J Phys Chem Lett ; 12(33): 8072-8079, 2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34406018

ABSTRACT

Mastering mechanical properties of polymers at nanometer scale is highly demanded yet remains challenging. Pioneering advances determined Young's modulus in ultrathin polymer films and attained unprecedented results including rubbery stiffening. However, many viscoelastic properties such as dynamic mechanical behavior of freestanding nanoconfined polymer films are still unknown. Here we demonstrate striking changes of stiffness and the ratio between elastic and viscous responses in thin PDMS films, using a microvibrational system which enables direct measurements of dynamic stress-strain relation of freestanding films. The results show that elastic modulus is enhanced by a factor of 135 in 50 nm films than the bulk, while the viscous response substantially increases at strains >0.05 in 125 nm films. These observations exhibit significant alterations of viscoelasticity under nanoconfinement. With insights on the underlying mechanism of these results, this study is expected to provide new evidence toward gaining a comprehensive understanding of nanoconfinement effect of soft matter.


Subject(s)
Elastomers/chemistry , Nanotechnology , Dimethylpolysiloxanes/chemistry , Elasticity , Mechanical Phenomena , Membranes, Artificial , Viscosity
12.
Sci Rep ; 11(1): 6303, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737649

ABSTRACT

Fertilizer-induced changes in soil nutrients regulate nitrogen (N) fixation in the terrestrial biosphere, but the influences of N and phosphorus (P) fertilization on the diazotroph communities in successive crop seasons were unclear. In this study, we assessed the effects of N and P (high vs. low doses) on the abundance and structure of N2-fixation communities after wheat and soybean harvest in a long-term (34 and 35 years) fertilization experiment. In both seasons, long-term N addition significantly decreased the abundance of nifH genes and 16S rDNA; in addition, high doses of N and P fertilizer decreased the richness of diazotrophs, whereas low doses did not. The proportion of the dominant genus, Bradyrhizobium, in the soybean season (86.0%) was higher than that in the wheat season (47.9%). Fertilization decreased diazotroph diversity and the relative abundance of Bradyrhizobium in the wheat season, but had insignificant effects in the soybean season. The addition of N, but not P, significantly changed the communities of both diazotrophs (at the genus level) and rhizobia (at the species level) in the two seasons. Soil pH was positively associated with nifH abundance and diazotrophic richness; soil NO3- content was negatively correlated with diazotrophic richness and positively correlated with diversity. Soil pH and NO3- content were the two main drivers shaping the soil diazotrophic community. Overall, long-term inorganic N had a greater influence than P on both diazotrophic abundance and community composition, and diazotrophic diversity was more clearly affected by fertilization in the wheat season than in the soybean season.

13.
Front Microbiol ; 11: 539669, 2020.
Article in English | MEDLINE | ID: mdl-33013777

ABSTRACT

Increased inorganic nitrogen (N) and phosphorus (P) additions expected in the future will endanger the biodiversity and stability of agricultural ecosystems. In this context, a long-term fertilizer experiment (37 years) was set up in the black soil of northeast China. We examined interaction impacts of elevated fertilizer and host selection processes on arbuscular mycorrhizal fungi (AMF) communities in wheat rhizosphere soil using the Illumina MiSeq platform. The soil samples were subjected to five fertilization regimes: no fertilizer (CK) and low N (N1), low N plus low P (N1P1), high N (N2), and high N plus high P (N2P2) fertilizer. Long-term fertilization resulted in a significant shift in rhizosphere soil nutrient concentrations. The N fertilization (N1 and N2) did not significantly change rhizosphere AMF species diversity, but N plus P fertilization (N1P1 and N2P2) decreased it compared with CK. Non-metric multidimensional scaling showed that the rhizosphere AMF communities in CK, N1, N2, N1P1 and N2P2 treatments were distinct from each other. The AMF communities were predominantly composed of Glomeraceae, accounting for 30.0-39.1% of the sequences, and the relative abundance of family Glomeraceae was more abundance in fertilized soils, while family Paraglomeraceae were increased in N1 and N2 compared with CK. Analysis shown that AMF diversity was directly affected by soil C:P ratio but indirectly affected by plant under long-term fertilization. Overall, the results indicated that long-term N and P fertilization regimes changed rhizosphere AMF diversity and community composition, and rhizosphere AMF diversity was both affected by soil C:P ratio and plant.

14.
Microbiologyopen ; 9(1): e00942, 2020 01.
Article in English | MEDLINE | ID: mdl-31568679

ABSTRACT

In this study, we investigated the physicochemical properties of soil, and the diversity and structure of the soil ammonia-oxidizing archaea (AOA) community, when subjected to fertilizer treatments for over 35 years. We collected soil samples from a black soil fertilization trial in northeast China. Four treatments were tested: no fertilization (CK); manure (M); nitrogen (N), phosphorus (P), and potassium (K) chemical fertilizer (NPK); and N, P, and K plus M (MNPK). We employed 454 high-throughput pyrosequencing to measure the response of the soil AOA community to the long-term fertilization. The fertilization treatments had different impacts on the shifts in the soil properties and AOA community. The utilization of manure alleviated soil acidification and enhanced the soybean yield. The soil AOA abundance was increased greatly by inorganic and organic fertilizers. In addition, the community Chao1 and ACE were highest in the MNPK treatment. In terms of the AOA community composition, Thaumarchaeota and Crenarchaeota were the main AOA phyla in all samples. Compared with CK and M, the abundances of Thaumarchaeota were remarkably lower in the MNPK and NPK treatments. There were distinct shifts in the compositions of the AOA operational taxonomic units (OTUs) under different fertilization management practices. OTU51 was the dominant OTU in all treatments, except for NPK. OTU79 and OTU11 were relatively abundant OTUs in NPK. Only Nitrososphaera AOA were tracked from the black soil. Redundancy analysis indicated that the soil pH and soil available P were the two main factors that affected the AOA community structure. The abundances of AOA were positively correlated with the total N and available P concentrations, and negatively correlated with the soil pH.


Subject(s)
Ammonia/metabolism , Archaea/classification , Archaea/metabolism , Fertilizers/analysis , Soil/chemistry , Archaea/growth & development , China , Nitrogen Compounds/analysis , Oxidation-Reduction , Phosphorus/analysis , Potassium/analysis , Soil Microbiology , Glycine max/growth & development
15.
J Phys Chem B ; 123(10): 2448-2453, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30763094

ABSTRACT

This letter presents an accelerated physical aging of polystyrene (PS) blocks in polystyrene- block-poly(methyl methacrylate) (PS- b-PMMA) diblock copolymers under hard confinement. The three-dimensional hard nanoconfinement was provided by the PMMA component owing to its high elasticity and was formed via self-assembled microphase separation. Aging was observed by measuring enthalpy recovery of the PS blocks in the copolymers for which the degree of polymerization ( N) of PS blocks is fixed, whereas the N of PMMA blocks varies. Our results demonstrate that the aging speed of the PS blocks can increase by a factor of three to that of the neat PS as the N of PMMA blocks increases. Therefore, the hard confinement accelerates physical aging of the PS blocks, i.e., the relatively soft component in the copolymer.

16.
AMB Express ; 8(1): 57, 2018 Apr 17.
Article in English | MEDLINE | ID: mdl-29667106

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) play vital roles in sustaining soil productivity and plant communities. However, adaption and differentiation of AMF in response to commonly used fertilization remain poorly understood. In this study, we showed that the AMF community composition was primarily driven by soil physiochemical changes associated with chronic inorganic and organic fertilization of 37 years in Mollisols. High-throughput sequencing indicated that inorganic fertilizer negatively affected AMF diversity and richness, implying a reduction of mutualism in plant-AMF symbiosis; however, a reverse trend was observed for the application of inorganic fertilizer combined with manure. With regards to AMF community composition, order Glomerales was dominant, but varied significantly among different fertilization treatments. All fertilization treatments decreased family Glomeraceae and genus Funneliformis, while Rhizophagus abundance increased. Plant-growth-promoting-microorganisms of family Claroideoglomeraceae and genus Claroideoglomus were stimulated by manure application, and likely benefited pathogen suppression and phosphorus (P) acquisition. Family Gigasporaceae and genus Gigaspora were negatively correlated with available P in soil. Additionally, redundancy analysis further suggested that soil available P, organic matter and pH were the most important factors in shaping AMF community composition. These results provide strong evidence for niche differentiation of phylogenetically distinct AMF populations under different fertilization regimes. Manure likely contributes to restoration and maintenance of plant-AMF symbiosis, and the balanced fertilization would favor the growth of beneficial AMF communities as one optimized management in support of sustainable agriculture in Mollisols.

17.
Microbiologyopen ; 7(5): e00597, 2018 10.
Article in English | MEDLINE | ID: mdl-29573192

ABSTRACT

How fungi respond to long-term fertilization in Chinese Mollisols as sensitive indicators of soil fertility has received limited attention. To broaden our knowledge, we used high-throughput pyrosequencing and quantitative PCR to explore the response of soil fungal community to long-term chemical and organic fertilization strategies. Soils were collected in a 35-year field experiment with four treatments: no fertilizer, chemical phosphorus, and potassium fertilizer (PK), chemical phosphorus, potassium, and nitrogen fertilizer (NPK), and chemical phosphorus and potassium fertilizer plus manure (MPK). All fertilization differently changed soil properties and fungal community. The MPK application benefited soil acidification alleviation and organic matter accumulation, as well as soybean yield. Moreover, the community richness indices (Chao1 and ACE) were higher under the MPK regimes, indicating the resilience of microbial diversity and stability. With regards to fungal community composition, the phylum Ascomycota was dominant in all samples, followed by Zygomycota, Basidiomycota, Chytridiomycota, and Glomeromycota. At each taxonomic level, the community composition dramatically differed under different fertilization strategies, leading to different soil quality. The NPK application caused a loss of Leotiomycetes but an increase in Eurotiomycetes, which might reduce the plant-fungal symbioses and increase nitrogen losses and greenhouse gas emissions. According to the linear discriminant analysis (LDA) coupled with effect size (LDA score > 3.0), the NPK application significantly increased the abundances of fungal taxa with known pathogenic traits, such as order Chaetothyriales, family Chaetothyriaceae and Pleosporaceae, and genera Corynespora, Bipolaris, and Cyphellophora. In contrast, these fungi were detected at low levels under the MPK regime. Soil organic matter and pH were the two most important contributors to fungal community composition.


Subject(s)
Agriculture/methods , Fertilizers , Fungi/classification , Fungi/isolation & purification , Mycobiome/drug effects , Soil Microbiology , China , DNA, Fungal/chemistry , DNA, Fungal/genetics , Fungi/genetics , High-Throughput Nucleotide Sequencing , Real-Time Polymerase Chain Reaction
18.
AMB Express ; 8(1): 20, 2018 Feb 13.
Article in English | MEDLINE | ID: mdl-29442257

ABSTRACT

Bacteria play vital roles in soil biological fertility; however, it remains poorly understood about their response to long-term fertilization in Chinese Mollisols, especially when organic manure is substituted for inorganic nitrogen (N) fertilizer. To broaden our knowledge, high-throughput pyrosequencing and quantitative PCR were used to explore the impacts of inorganic fertilizer and manure on bacterial community composition in a 35-year field experiment of Chinese Mollisols. Soils were collected from four treatments: no fertilizer (CK), inorganic phosphorus (P) and potassium (K) fertilizer (PK), inorganic P, K, and N fertilizer (NPK), and inorganic P and K fertilizer plus manure (MPK). All fertilization differently changed soil properties. Compared with CK, the PK and NPK treatments acidified soil by significantly decreasing soil pH from 6.48 to 5.53 and 6.16, respectively, while MPK application showed no significant differences of soil pH, indicating alleviation of soil acidification. Moreover, all fertilization significantly increased soil organic matter (OM) and soybean yields, with the highest observed under MPK regime. In addition, the community composition at each taxonomic level varied considerably among the fertilization strategies. Bacterial taxa, associated with plant growth promotion, OM accumulation, disease suppression, and increased soil enzyme activity, were overrepresented in the MPK regime, while they were present at low abundant levels under NPK treatment, i.e. phyla Proteobacteria and Bacteroidetes, class Alphaproteobacteria, and genera Variovorax, Chthoniobacter, Massilia, Lysobacter, Catelliglobosispora and Steroidobacter. The application of MPK shifted soil bacterial community composition towards a better status, and such shifts were primarily derived from changes in soil pH and OM.

19.
Sci Rep ; 7(1): 10946, 2017 09 08.
Article in English | MEDLINE | ID: mdl-28887528

ABSTRACT

Nodulation competition is a key factor that limits symbiotic nitrogen fixation between rhizobia and their host legumes. Soybean root exudates (SREs) are thought to act as signals that influence Bradyrhizobium ability to colonize roots and to survive in the rhizosphere, and thus they act as a key determinant of nodulation competitiveness. In order to find the competitiveness-related genes in B. diazoefficiens, the transcriptome of two SREs treated B. diazoefficiens with completely different nodulation abilities (B. diazoefficiens 4534 and B. diazoefficiens 4222) were sequenced and compared. In SREs treated strain 4534 (SREs-4534), 253 unigenes were up-regulated and 204 unigenes were down-regulated. In SREs treated strain 4534 (SREs-4222), the numbers of up- and down-regulated unigenes were 108 and 185, respectively. There were considerable differences between the SREs-4534 and SREs-4222 gene expression profiles. Some differentially expressed genes are associated with a two-component system (i.g., nodW, phyR-σEcfG), bacterial chemotaxis (i.g., cheA, unigene04832), ABC transport proteins (i.g., unigene02212), IAA (indole-3-acetic acid) metabolism (i.g., nthA, nthB), and metabolic fitness (i.g., put.), which may explain the higher nodulation competitiveness of B. diazoefficiens in the rhizosphere. Our results provide a comprehensive transcriptomic resource for SREs treated B. diazoefficiens and will facilitate further studies on competitiveness-related genes in B. diazoefficiens.


Subject(s)
Bradyrhizobium/genetics , Genes, Bacterial , Plant Root Nodulation , Bradyrhizobium/drug effects , Bradyrhizobium/metabolism , Bradyrhizobium/pathogenicity , Plant Extracts/pharmacology , Rhizosphere , Glycine max/chemistry , Glycine max/microbiology , Transcriptome
20.
Sci Rep ; 7(1): 3267, 2017 06 12.
Article in English | MEDLINE | ID: mdl-28607352

ABSTRACT

Long-term use of inorganic nitrogen (N) fertilization has greatly influenced the bacterial community in black soil of northeast China. It is unclear how N affects the bacterial community in two successive crop seasons in the same field for this soil type. We sampled soils from a long-term fertilizer experimental field in Harbin city with three N gradients. We applied sequencing and quantitative PCR targeting at the 16S rRNA gene to examine shifts in bacterial communities and test consistent shifts and driving-factors bacterial responses to elevated N additions. N addition decreased soil pH and bacterial 16S rDNA copy numbers, and increased soil N and crop yield. N addition consistently decreased bacterial diversity and altered bacterial community composition, by increasing the relative abundance of Proteobacteria, and decreasing that of Acidobacteria and Nitrospirae in both seasons. Consistent changes in the abundant classes and genera, and the structure of the bacterial communities across both seasons were observed. Our results suggest that increases in N inputs had consistent effects on the richness, diversity and composition of soil bacterial communities across the crop seasons in two continuous years, and the N addition and the subsequent edaphic changes were important factors in shaping bacterial community structures.


Subject(s)
Bacteria/classification , Fertilizers/analysis , Nitrogen/analysis , Seasons , Soil Microbiology , Soil/chemistry , Bacteria/genetics , Biodiversity , China , Crops, Agricultural , Metagenome , Metagenomics/methods , RNA, Ribosomal, 16S
SELECTION OF CITATIONS
SEARCH DETAIL