Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 218
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 14336, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906938

ABSTRACT

Fungal diseases, such as powdery mildew and rusts, significantly affect the quality and yield of wheat. Pyramiding diverse types of resistance genes into cultivars represents the preferred strategy to combat these diseases. Moreover, achieving collaborative improvement between diseases resistance, abiotic stress, quality, and agronomic and yield traits is difficult in genetic breeding. In this study, the wheat cultivar, Guinong 29 (GN29), showed high resistance to powdery mildew and stripe rust at both seedling and adult plant stages, and was susceptible to leaf rust at the seedling stage but slow resistance at the adult-plant stage. Meanwhile, it has elite agronomic and yield traits, indicating promising coordination ability among multiple diseases resistance and other key breeding traits. To determine the genetic basis of these elite traits, GN29 was tested with 113 molecular markers for 98 genes associated with diseases resistance, stress tolerance, quality, and adaptability. The results indicated that two powdery mildew resistance (Pm) genes, Pm2 and Pm21, confirmed the outstanding resistance to powdery mildew through genetic analysis, marker detection, genomic in situ hybridization (GISH), non-denaturing fluorescence in situ hybridization (ND-FISH), and homology-based cloning; the stripe rust resistance (Yr) gene Yr26 and leaf rust resistance (Lr) genes Lr1 and Lr46 conferred the stripe rust and slow leaf rust resistance in GN29, respectively. Meanwhile, GN29 carries dwarfing genes Rht-B1b and Rht-D1a, vernalization genes vrn-A1, vrn-B1, vrn-D1, and vrn-B3, which were consistent with the phenotypic traits in dwarf characteristic and semi-winter property; carries genes Dreb1 and Ta-CRT for stress tolerance to drought, salinity, low temperature, and abscisic acid (ABA), suggesting that GN29 may also have elite stress-tolerance ability; and carries two low-molecular-weight glutenin subunit genes Glu-B3b and Glu-B3bef which contributed to high baking quality. This study not only elucidated the genetic basis of the elite traits in GN29 but also verified the capability for harmonious improvement in both multiple diseases resistance and other comprehensive traits, offering valuable information for breeding breakthrough-resistant cultivars.


Subject(s)
Ascomycota , Disease Resistance , Plant Diseases , Triticum , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Ascomycota/pathogenicity , Ascomycota/physiology , Plant Breeding/methods , Phenotype , Basidiomycota/physiology , Basidiomycota/pathogenicity , Genes, Plant , Chromosome Mapping
2.
Front Plant Sci ; 15: 1387427, 2024.
Article in English | MEDLINE | ID: mdl-38817928

ABSTRACT

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most destructive fungal diseases threatening global wheat production. Exploring powdery mildew resistance (Pm) gene(s) and dissecting the molecular mechanism of the host resistance are critical to effectively and reasonably control this disease. Durum wheat (Triticum turgidum L. var. durumDesf.) is an important gene donor for wheat improvement against powdery mildew. In this study, a resistant durum wheat accession W762 was used to investigate its potential resistance component(s) and profile its expression pattern in responding to Bgt invasion using bulked segregant RNA-Seq (BSR-Seq) and further qRT-PCR verification. Genetic analysis showed that the powdery mildew resistance in W762 did not meet monogenic inheritance and complex genetic model might exist within the population of W762 × Langdon (susceptible durum wheat). After BSR-Seq, 6,196 consistently different single nucleotide polymorphisms (SNPs) were called between resistant and susceptible parents and bulks, and among them, 763 SNPs were assigned to the chromosome arm 7B. Subsequently, 3,653 differentially expressed genes (DEGs) between resistant and susceptible parents and bulks were annotated and analyzed by Gene Ontology (GO), Cluster of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The potential regulated genes were selected and analyzed their temporal expression patterns following Bgt inoculation. As a result, nine disease-related genes showed distinctive expression profile after Bgt invasion and might serve as potential targets to regulate the resistance against powdery mildew in W762. Our study could lay a foundation for analysis of the molecular mechanism and also provide potential targets for the improvement of durable resistance against powdery mildew.

3.
Inorg Chem ; 63(23): 10603-10610, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38804710

ABSTRACT

Exploring a novel photocatalyst for catalytic oxidation of toluene is a sustainable strategy for energy conversion in times of an energy crisis. However, designing an effective photocatalyst for the conversion of toluene remains challenging. Herein, a novel organic monophosphonate-modified high nucleus Cu-incorporated polyoxotungstate, K8H33[{Cu0.5(H2O)4}{Cu2(O3PCH2COO)(1,4,9-α-P2W15O56)}]4·Cl·60H2O (1), has been intentionally synthesized by a self-assembly process utilizing conventional aqueous method. It reveals that 1 contains a polyanion of [{Cu0.5(H2O)}4{Cu2(O3PCH2COO)(1,4,9-α-P2W15O56)}]440- composed of four Dawson-type {1,4,9-α-P2W15} subunits, forming an oval-shaped structure and further connecting into a three-dimensional (3D) framework by lateral {Cu(H2O)4}2+. Interestingly, the trivacant {1,4,9-α-P2W15} subunits were observed in the organophosphonate acid-functionalized polyoxometalates for the first time. Notably, 1 exhibits a wonderful performance in catalytic oxidation of the recalcitrant C(sp3)-H bond of toluene to benzoic acid with a conversion as high as 97% under visible light utilizing O2 as an oxidant.

4.
Front Nutr ; 11: 1389745, 2024.
Article in English | MEDLINE | ID: mdl-38689937

ABSTRACT

Background: Bread wheat is one of the most important food crops associated with ensuring food security and human nutritional health. The starch quality is an important index of high-quality wheat. It is affected by a complex series of factors; among which, suitable sowing time is a key factor. Aim and methods: To analyze the integrative effects of sowing time on the starch quality of high-quality wheat, in the present study, we selected a high-quality bread wheat cultivar Jinan 17 and investigated the effect of different sowing times on the starch properties and the related genes by analyzing X-ray diffraction patterns, apparent amylose content, thermal properties, pasting properties, in vitro starch digestibility, and qRT-PCR. Meanwhile, we also investigated the agronomic and yield performance that may be associated with the starch properties. Results: Delayed sowing had little effect on starch crystalline morphology, but there was a tendency to reduce the formation of crystals within wheat starch granules: (1) delayed sowing for 15 days altered the thermal properties of starch, including onset, peak and termination temperatures, and enthalpy changes; (2) delayed sowing for 30 days changed the thermal characteristics of starch relatively insignificant; (3) significant differences in pasting characteristics occurred: peak viscosity and hold-through viscosity increased, while final viscosity, breakdown viscosity, and setback viscosity tended to increase and then decrease, suggesting that delayed sowing caused changes in the surface of the starch granules resulting in a decrease in digestibility. Analysis of related genes showed that several key enzymes in starch biosynthesis were significantly affected by delayed sowing, leading to a reduction in apparent straight-chain starch content. In addition to starch properties, thousand-kernel weight also increased under delayed sowing conditions compared with normal sowing. Conclusion: The impact of delayed sowing on starch quality is multifaceted and complex, from the fine structure, and functional properties of the starch to the regulation of key gene expression. Our study holds significant practical value for optimizing wheat planting management and maximizing the potential in both quality and yield.

5.
Inorg Chem ; 63(16): 7325-7333, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38602808

ABSTRACT

The synthesis of visible light-responsive and efficient photocatalysts toward green Baeyer-Villiger oxidation organic synthesis is of extraordinary significance. In this work, we have synthesized two examples of visible light responsive crystalline polyoxometalate@metal-organic framework materials Ru-NiMo and Ru-CoMo by introducing Ru metalloligands and {CdM3O12} bimetallic units (M = Ni or Co). This is the first report of metalloligand-modified polyoxometalate@metal-organic framework materials with bimetallic nodes, and the materials form a three-dimensional framework directly through coordination bonds between {CdM3O12} bimetallic units and metalloligands. In particular, Ru-NiMo can achieve efficient photocatalytic conversion of cyclohexanone to ε-caprolactone in yields as high as 95.5% under visible light excitation in the range of λ > 400 nm, achieving a turnover number and turnover frequency of 955 and 440 h-1, respectively, which are the best known photocatalysts for Baeyer-Villiger oxidation, while apparent quantum yield measured at 485 nm is 4.4%. Moreover, Ru-NiMo exhibited excellent structural stability and recyclability, producing a 90.8% yield after five cycles of recycling.

6.
Inorg Chem ; 63(19): 8791-8798, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38687152

ABSTRACT

Three unique dl-malic acid covalently modified tetra-Ln3+-implanted tellurotungstates [H2(CH3)2]9NaH9[Ln4(H2O)14W6O13(OH)5(Mal)2(B-α-TeW9O33)4]·48H2O [Ln = La3+ (1), Ce3+ (2), Pr3+ (3); H3Mal = dl-malic acid] were fabricated by reacting Na2TeO3, Na2WO4·2H2O, Mal, and LnCl3·6H2O with dimethylamine hydrochloride in an aqueous solution. The most prominent architectural feature of these compounds is the covalent connection mode of an organic ligand and a polyoxometallate backbone, which is relatively rare in the realm of polyoxotungstates. The tetrameric polyanion can be deemed as four [TeW9O33]8- fragments fused together via an intriguing hexanuclearity [W6O13(OH)5(Mal)2Ln4(H2O)14]13+ cluster. Impedance measurements manifest that all three complexes display splendid proton conduction properties, with an exceptional conductivity for 2 up to 2.48 × 10-2 S·cm-1 under 85 °C and 95% relative humidity. Moreover, compounds 1 and 3 exhibited fast reversible photochromic properties with allochroic half-life periods t1/2 of 1.046 and 0.544 min, respectively.

7.
Inorg Chem ; 63(14): 6260-6267, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38517738

ABSTRACT

In this paper, we have successfully synthesized a structurally novel heteropolytungstate via coordination of four {Ru(C6H6)} and trivacant {TeW9O33} clusters, formulated as Cs4Na2H2[Te2W20O72(H2O){(C6H6)Ru}4]·12H2O (1). Compound 1 inherited the strong absorption of [Ru(C6H6)Cl2]2 in the visible region and {TeW9O33} in the UV region, providing a good basis for photocatalysis. As expected, compound 1 showed good photocatalytic activity in the visible-light-driven reduction of nitrobenzene using N2H4·H2O as a reductant with a yield of 99.8%, a high turnover number (TON = 330), and a high turnover frequency (TOF = 24 h-1). The cyclic experiment of nitrobenzene reduction indicated that compound 1 was an effective and stable heterogeneous catalyst. Finally, the nitrobenzene reduction pathway was affirmed using condensation with azobenzene as a reaction intermediate based on control experiments.

8.
Inorg Chem ; 63(14): 6268-6275, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38545916

ABSTRACT

A 6-Ti-substituted polyoxometalate, (NH4)5Cs7Na3H2[Cs@(Ti2GeMo10O39)3]·34H2O (1), was synthesized by reacting (NH4)6Mo7O24·4H2O, GeO2, and TiOSO4 through the conventional aqueous method. Polyanion 1a is composed of three {Ti2GeMo10} segments linked by Ti-O-Ti linkages and shows a trefoil-shaped structure. Furthermore, one Cs+ cation is encapsulated in the cavity of 1a. Notably, it possesses the highest number of Ti centers among the reported polyoxomolybdates. In addition, serving as a high-efficiency heterogeneous catalyst, 1 enables the conversion of methyl phenyl sulfide within 20 min, yielding 96.4% of the corresponding sulfoxide with good recyclability.

9.
Dalton Trans ; 53(12): 5562-5566, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38426855

ABSTRACT

Two Ni-inserted polyoxotantalates, K5.5Na2H0.5[Ni(H2O)2{NiTa10O30(OH)2}]·21H2O (1) and K6Na4[Ni(en){NiTa10O32}]·22H2O (2, en = ethanediamine), were synthesized in this work. Crystallographic data analyses reveal that 1 and 2 have similar configurations. A minor difference between these two structures is that the {Ni(H2O)2} unit in 1 is replaced by {Ni(en)} unit in 2. Notably, the other Ni in 1 and 2 is located as a heteroatom at the center of the {Ta10} unit, which is reported in POTas for the first time. Moreover, 2 exhibits excellent catalytic performance in transesterification reactions in a preliminary exploration of the catalytic ability of the synthesized POTas.

10.
Nat Commun ; 15(1): 2449, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503771

ABSTRACT

Wheat powdery mildew is one of the most destructive diseases threatening global wheat production. The wild relatives of wheat constitute rich sources of diversity for powdery mildew resistance. Here, we report the map-based cloning of the powdery mildew resistance gene Pm13 from the wild wheat species Aegilops longissima. Pm13 encodes a mixed lineage kinase domain-like (MLKL) protein that contains an N-terminal-domain of MLKL (MLKL_NTD) domain in its N-terminus and a C-terminal serine/threonine kinase (STK) domain. The resistance function of Pm13 is validated by mutagenesis, gene silencing, transgenic assay, and allelic association analyses. The development of introgression lines with significantly reduced chromosome segments of Ae. longissima encompassing Pm13 enables widespread deployment of this gene into wheat cultivars. The cloning of Pm13 may provide valuable insights into the molecular mechanisms underlying Pm13-mediated powdery mildew resistance and highlight the important roles of kinase fusion proteins (KFPs) in wheat immunity.


Subject(s)
Aegilops , Ascomycota , Triticum/genetics , Genes, Plant , Disease Resistance/genetics , Ascomycota/genetics , Aegilops/genetics , Protein Kinases/genetics , Plant Diseases/genetics
11.
Mol Breed ; 44(4): 28, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38545461

ABSTRACT

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a severe disease that affects the yield and quality of wheat. Popularization of resistant cultivars in production is the preferred strategy to control this disease. In the present study, the Chinese wheat breeding line Jimai 809 showed excellent agronomic performance and high resistance to powdery mildew at the whole growth stage. To dissect the genetic basis for this resistance, Jimai 809 was crossed with the susceptible wheat cultivar Junda 159 to produce segregation populations. Genetic analysis showed that a single dominant gene, temporarily designated PmJM809, conferred the resistance to different Bgt isolates. PmJM809 was then mapped on the chromosome arm 2BL and flanked by the markers CISSR02g-1 and CIT02g-13 with genetic distances 0.4 and 0.8 cM, respectively, corresponding to a physical interval of 704.12-708.24 Mb. PmJM809 differed from the reported Pm genes on chromosome arm 2BL in origin, resistance spectrum, physical position and/or genetic diversity of the mapping interval, also suggesting PmJM809 was located on a complex interval with multiple resistance genes. To analyze and screen the candidate gene(s) of PmJM809, six genes related to disease resistance in the candidate interval were evaluated their expression patterns using an additional set of wheat samples and time-course analysis post-inoculation of the Bgt isolate E09. As a result, four genes were speculated as the key candidate or regulatory genes. Considering its comprehensive agronomic traits and resistance findings, PmJM809 was expected to be a valuable gene resource in wheat disease resistance breeding. To efficiently transfer PmJM809 into different genetic backgrounds, 13 of 19 closely linked markers were confirmed to be suitable for marker-assisted selection. Using these markers, a series of wheat breeding lines with harmonious disease resistance and agronomic performance were selected from the crosses of Jimai 809 and several susceptible cultivars. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01467-8.

12.
Chem Commun (Camb) ; 60(22): 3043-3046, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38376477

ABSTRACT

A wheel-shaped Zr-substituted phosphotungstate, [N(CH3)4]2K16Na10.5H10.5[{Zr(C2O4)2}3(PO4)(P6W39O150)]·45H2O (1), was synthesised from a hexavacant Dawson-type precursor [H2P2W12O48]12-via a conventional solution method. Compound 1 features a wheel-shaped polyanion comprising an annular [P6W39O150]36- cluster supported by a turbine-shaped [{Zr(C2O4)2}3(PO4)]3- fragment, with three oxalate groups covalently anchored to W atoms. Compound 1 was systematically characterized by IR, UV, PXRD, TGA and 31P NMR spectra. The 31P NMR spectra over time were monitored to verify the stability of 1 in aqueous solution. This compound possesses remarkable proton conductive behavior with a high conductivity of 1.18 × 10-2 S cm-1 at 368 K.

13.
Front Genet ; 15: 1342239, 2024.
Article in English | MEDLINE | ID: mdl-38327832

ABSTRACT

Powdery mildew is one of the most severe diseases affecting wheat yield and quality and is caused by Blumeria graminis f. sp. tritici (Bgt). Host resistance is the preferred strategy to prevent this disease. However, the narrow genetic basis of common wheat has increased the demand for diversified germplasm resources against powdery mildew. Wheat relatives, especially the secondary gene pool of common wheat, are important gene donors in the genetic improvement of common wheat because of its abundant genetic variation and close kinship with wheat. In this study, a series of 137 wheat relatives, including 53 Triticum monococcum L. (2n = 2x = 14, AA), 6 T. urartu Thumanjan ex Gandilyan (2n = 2x = 14, AA), 9 T. timopheevii Zhuk. (2n = 4x = 28, AAGG), 66 T. aestivum subsp. spelta (2n = 6x = 42, AABBDD), and 3 Aegilops speltoides (2n = 2x = 14, SS) were systematically evaluated for their powdery mildew resistance and composition of Pm genes. Out of 137 (60.58%) accessions, 83 were resistant to Bgt isolate E09 at the seedling stage, and 116 of 137 (84.67%) wheat relatives were resistant to the mixture of Bgt isolates at the adult stage. This indicates that these accessions show a high level of resistance to powdery mildew. Some 31 markers for 23 known Pm genes were used to test these 137 accessions, and, in the results, only Pm2, Pm4, Pm6, Pm58, and Pm68 were detected. Among them, three Pm4 alleles (Pm4a, Pm4b, and Pm4f) were identified in 4 T. subsp. spelta accessions. q-RT PCR further confirmed that Pm4 alleles played a role in disease resistance in these four accessions. The phylogenetic tree showed that the kinship of Pm4 was close to Pm24 and Sr62. This study not only provides reference information and valuable germplasm resources for breeding new wheat varieties with disease resistance but also lays a foundation for enriching the genetic basis of wheat resistance to powdery mildew.

14.
Plant Dis ; 108(6): 1670-1681, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38173259

ABSTRACT

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a serious threat to wheat (Triticum aestivum L.) production. Narrow genetic basis of common wheat boosted the demand for diversified donors against powdery mildew. Aegilops tauschii Coss (2n = 2x = DD) and emmer wheat (2n = 4x = AABB), as the ancestor species of common wheat, are important gene donors for genetic improvement of common wheat. In this study, a total of 71 Ae. tauschii and 161 emmer wheat accessions were first evaluated for their powdery mildew resistance using the Bgt isolate E09. Thirty-three Ae. tauschii (46.5%) and 108 emmer wheat accessions (67.1%) were resistant. Then, all these accessions were tested by the diagnostic markers for 21 known Pm genes. The results showed that Pm2 alleles were detected in all the 71 Ae. tauschii and only Pm4 alleles were detected in 20 of 161 emmer wheat accessions. After haplotype analysis, we identified four Pm4 alleles (Pm4a, Pm4b, Pm4d, and Pm4f) in the emmer wheat accessions and three Pm2 alleles (Pm2d, Pm2e, and Pm2g) in the Ae. tauschii. Further resistance spectrum analysis indicated that these resistance accessions displayed different resistance reactions to different Bgt isolates, implying they may have other Pm genes apart from Pm2 and/or Pm4 alleles. Notably, a new Pm2 allele, Pm2S, was identified in Ae. tauschii, which contained a 64-bp deletion in the first exon and formed a new termination site at the 513th triplet of the shifted reading frame compared with reported Pm2 alleles. The phylogenetic tree of Pm2S showed that the kinship of Pm2S was close to Pm2h. To efficiently and accurately detect Pm2S and distinguish with other Pm2 alleles in Ae. tauschii background, a diagnostic marker, YTU-QS-3, was developed, and its effectiveness was verified. This study provided valuable Pm alleles and enriched the genetic diversity of the powdery mildew resistance in wheat improvement.


Subject(s)
Aegilops , Ascomycota , Disease Resistance , Plant Diseases , Triticum , Triticum/genetics , Triticum/microbiology , Triticum/immunology , Ascomycota/physiology , Ascomycota/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Disease Resistance/genetics , Aegilops/genetics , Aegilops/microbiology , Genes, Plant/genetics , Alleles , Haplotypes
15.
Chemistry ; 30(14): e202302921, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38183325

ABSTRACT

An unclassical structure of {Ru(C6 H6 )}-based polyoxometalate, Cs6 H4 [Te2 Mo12 O46 {Ru(C6 H6 )}] ⋅ 16.5H2 O (1), has been successfully constructed from {Te2 Mo12 O46 }-type heteropolymolybdate and {Ru(C6 H6 )} group, which structure type was discovered for the first time. Compound 1 not only possesses strong light-harvesting ability, but also exhibits high carrier separation efficiency and lower charge transfer resistance. Under visible light irradiation, compound 1 displayed excellent catalytic activity and circularity in the conversion of benzyl alcohol to benzaldehyde (yield=94 %; turnover number=500; turnover frequency=20.8 h-1 ). Finally, the electron paramagnetic resonance measurement and energy level matching analysis provide theoretical basis for the derivation of the reaction mechanism.

16.
Inorg Chem ; 63(5): 2363-2369, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38266165

ABSTRACT

With the excellent properties of POM in the field of proton conductivity, the preparation of POM-based proton-conductive materials has burst into life. Herein, an unprecedented Sb-templated all-inorganic trimer Na8H18.64[(SbW14O52)3(Sb2W6.12Ru5.88O18)]·85H2O (1), which is based on tetravacant Dawson-like [SbW14O52]17- blocks and exhibits a trefoil type with D3 symmetry, has been successfully designed and synthesized by the assembly of simple materials with a one-pot hydrothermal method under acidic conditions. Also, compound 1 is systematically characterized by single-crystal X-ray diffraction, PXRD, ESI-MS, IR spectroscopy, UV-vis, elemental analysis, and TGA. Crystal structure data analysis demonstrates that compound 1 is constructed by a hexagonal prismatic heterometallic {Sb2W6.12Ru5.88O18} core and three equivalent {SbW14} units bridged through µ2-O atoms in periphery. Subsequently, further property experiments show that compound 1 exhibits high proton conductivity with a conductivity value (σ) of 3.07 × 10-2 S cm-1 at 75 °C and 80% relative humidity (RH). The activation energy of compound 1 evaluated by the Arrhenius plots is 0.22 eV, which indicates that the Grotthuss mechanism is dominant during the process of proton transfer.

17.
Dalton Trans ; 53(9): 3949-3958, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38295380

ABSTRACT

Since the first formation of the famous "Peacock-Weakley" anions [Ln(W5O18)2]8/9-, a steady stream of breakthroughs have been made in the chemistry of multitalented lanthanide (Ln)-based polyoxometalates (POMs) for their potentially desirable properties. In particular, LnIII ions are generally recognised as the "vitamins of the modern industry" owing to their ability to cover a wide emission range, endowing Ln-based POMs with great potential for versatile and diverse luminescence-related applications. In this frontier, we discuss the synthesis strategies and intramolecular energy transfer in Ln-based POM derivatives. Then, the progressive improvements achieved with Ln-based POMs in photoluminescence applications are highlighted, focusing mainly on luminescent and fluorescent probes. Finally, the challenges for Ln-based POM materials for photoluminescence applications are discussed.

18.
Chemistry ; 30(10): e202303401, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38057690

ABSTRACT

The synthesis of highly efficient visible-light-responsive photocatalysts is fundamental to solving the problems of low efficiency and poor selectivity in photocatalytic organic synthesis reactions. We synthesized a crystalline polyoxometalate @metal-organic framework material {Zn4 (H2 O)8 [Ir(ppy)2 (dcbpy)]4 [SiW12 O40 ]} ⋅ 4H2 O (Ir-SiW) by self-assembly of Ir metalloligands with POMs. The introduction of Ir metalloligands extends the light absorbing range to visible light, improving the efficient utilization of solar energy. The transfer of photogenerated electrons from Ir metalloligands to SiW12 was observed under visible light irradiation, which boosted the carrier separation efficiency. The synergistic effect of the two components increased the photocatalytic thioether oxidation activity, and the product methyl phenyl sulfoxide for 2.5 h under visible light irradiation (λ >400 nm) reached 99.5 %, which was higher than those of other POM-based photocatalysts. Meanwhile, the yield of methyl phenyl sulfoxide was still higher than 97 % after three cycles, demonstrating the high stability and reusability of Ir-SiW.

19.
Inorg Chem ; 62(51): 20980-20986, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38085912

ABSTRACT

Two 48-nuclei silver nanocages with similar structures and compositions were synthesized by using Keggin-type polyoxometalates (POMs) BW12 and SiW11Ni as anionic templates. However, their photoluminescence and photocurrent properties showed obvious differences. These results suggest that POMs not only serve as anion templates in constructing silver clusters but also influence their properties.

20.
Inorg Chem ; 62(49): 20153-20161, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37996253

ABSTRACT

Two two-dimensional Ln-substituted prazine dicarboxylic acid-functionalized selenotungstates Na3H9[(H2N(CH3)2]2{(Se4W27O100)[Ln4(H2O)8(Hpzdc)2(pzdc)]}·26H2O [Ln = Nd (1) and Ce (2)]; H2pzdc = 2,3-pyrazine dicarboxylic acid) have been synthesized by one-pot self-assembly strategy, in which the basic polyanion [Se4W27O100]22-was composed of two [SeW8O31]10- fragments, a [SeW9O33]8- segment and an intriguing {SeO} group, simultaneously tetra-nuclear Ln3+ ions with H2pzdc pendants were embedded. Compounds 1 and 2 showed excellent catalytic oxidation of thioether properties within a short time (20 min) with high 100% conversion and 98.9% selectivity. In addition, the pioneering Ln-substituted selenotungstates were used as catalysts to degrade sulfur mustard simulant 2-chloroethyl ethyl sulfide at room temperature with 99% conversion and 100% selectivity. The chemical kinetic experiment studies revealed that the catalytic reaction was in compliance with the first-order reaction, and the kinetic half-life (t1/2) values were 3.814 and 3.849 min, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL