Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(21): 216903, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38856288

ABSTRACT

Controlling interlayer excitons in Van der Waals heterostructures holds promise for exploring Bose-Einstein condensates and developing novel optoelectronic applications, such as excitonic integrated circuits. Despite intensive studies, several key fundamental properties of interlayer excitons, such as their binding energies and interactions with charges, remain not well understood. Here we report the formation of momentum-direct interlayer excitons in a high-quality MoSe_{2}/hBN/MoSe_{2} heterostructure under an electric field, characterized by bright photoluminescence (PL) emission with high quantum yield and a narrow linewidth of less than 4 meV. These interlayer excitons show electrically tunable emission energy spanning ∼180 meV through the Stark effect, and exhibit a sizable binding energy of ∼81 meV in the intrinsic regime, along with trion binding energies of a few millielectronvolts. Remarkably, we demonstrate the long-range transport of interlayer excitons with a characteristic diffusion length exceeding 10 µm, which can be attributed, in part, to their dipolar repulsive interactions. Spatially and polarization-resolved spectroscopic studies reveal rich exciton physics in the system, such as valley polarization, local trapping, and the possible existence of dark interlayer excitons. The formation and transport of tightly bound interlayer excitons with narrow linewidth, coupled with the ability to electrically manipulate their properties, open exciting new avenues for exploring quantum many-body physics, including excitonic condensate and superfluidity, and for developing novel optoelectronic devices, such as exciton and photon routers.

2.
RSC Adv ; 14(28): 19707-19717, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38903670

ABSTRACT

In recent decades, environmental protection and energy issues have gained significant attention, and the development of efficient, environmentally friendly catalysts has become especially crucial for the advancement of photocatalytic technology. This study employs the sintering method to produce biochar. A hybrid photocatalyst for the degradation of RHB under visible light was prepared by loading varying proportions of biochar onto g-C3N4 using ultrasonic technology. Among them, 2% CGCD (2% biochar/g-C3N4) achieved a degradation rate of 91.3% for RHB after 30 minutes of visible light exposure, which was more than 25% higher than GCD (g-C3N4), and exhibited a higher photocurrent intensity and lower impedance value. The enhancement in photocatalytic activity is primarily attributed to the increased utilization efficiency of visible light and the electron transfer channel effect from a minor amount of biochar, effectively reducing the recombination of photo-generated charge carriers on the g-C3N4 surface, thereby significantly improving photocatalytic activity. The degradation of RHB is synergistically mediated by O2 -, h+ (photo-generated holes), and ˙OH. The free radical capture experiment indicates that O2 - and ˙OH are the primary active components, followed by h+.

3.
Mol Med ; 30(1): 35, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454322

ABSTRACT

BACKGROUND: Neuronal ferroptosis plays a critical role in the pathogenesis of cognitive deficits. The present study explored whether artemisinin protected type 2 diabetes mellitus (T2DM) mice from cognitive impairments by attenuating neuronal ferroptosis in the hippocampal CA1 region. METHODS: STZ-induced T2DM mice were treated with artemisinin (40 mg/kg, i.p.), or cotreated with artemisinin and Nrf2 inhibitor MEL385 or ferroptosis inducer erastin for 4 weeks. Cognitive performance was determined by the Morris water maze and Y maze tests. Hippocampal ROS, MDA, GSH, and Fe2+ contents were detected by assay kits. Nrf2, p-Nrf2, HO-1, and GPX4 proteins in hippocampal CA1 were assessed by Western blotting. Hippocampal neuron injury and mitochondrial morphology were observed using H&E staining and a transmission electron microscope, respectively. RESULTS: Artemisinin reversed diabetic cognitive impairments, decreased the concentrations of ROS, MDA and Fe2+, and increased the levels of p-Nr2, HO-1, GPX4 and GSH. Moreover, artemisinin alleviated neuronal loss and ferroptosis in the hippocampal CA1 region. However, these neuroprotective effects of artemisinin were abolished by Nrf2 inhibitor ML385 and ferroptosis inducer erastin. CONCLUSION: Artemisinin effectively ameliorates neuropathological changes and learning and memory decline in T2DM mice; the underlying mechanism involves the activation of Nrf2 to inhibit neuronal ferroptosis in the hippocampus.


Subject(s)
Artemisinins , Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Ferroptosis , Animals , Mice , NF-E2-Related Factor 2 , Reactive Oxygen Species , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Hippocampus , Artemisinins/pharmacology , Artemisinins/therapeutic use , Neurons
4.
Light Sci Appl ; 12(1): 295, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38057305

ABSTRACT

Various exciton species in transition metal dichalcogenides (TMDs), such as neutral excitons, trions (charged excitons), dark excitons, and biexcitons, have been individually discovered with distinct light-matter interactions. In terms of valley-spin locked band structures and electron-hole configurations, these exciton species demonstrate flexible control of emission light with degrees of freedom (DOFs) such as intensity, polarization, frequency, and dynamics. However, it remains elusive to fully manipulate different exciton species on demand for practical photonic applications. Here, we investigate the contrasting light-matter interactions to control multiple DOFs of emission light in a hybrid monolayer WSe2-Ag nanowire (NW) structure by taking advantage of various exciton species. These excitons, including trions, dark excitons, and biexcitons, are found to couple independently with propagating surface plasmon polaritons (SPPs) of Ag NW in quite different ways, thanks to the orientations of transition dipoles. Consistent with the simulations, the dark excitons and dark trions show extremely high coupling efficiency with SPPs, while the trions demonstrate directional chiral-coupling features. This study presents a crucial step towards the ultimate goal of exploiting the comprehensive spectrum of TMD excitons for optical information processing and quantum optics.

5.
Small ; 18(44): e2204317, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36148858

ABSTRACT

Van der Waals semiconducting heterostructures, known as stacks of atomically thin transition-metal dichalcogenide (TMD) layers, have recently been reported as new quantum materials with fascinating optoelectronic properties and novel functionalities. These discoveries are significantly related to the interfacial carrier dynamics of the excited states. Carrier dynamics have been reported to be predominantly driven by the ultrafast charge transfer (CT) process; however, the energy transfer (ET) process remains elusive. Herein, the ET process in MoS2 /WS2 heterostructures via transient absorption microscopy is reported. By analyzing the ultrafast dynamics using various MoS2 /WS2 interfaces, an ET rate of ≈240 fs is obtain, which is not trivial to the CT process. This study elucidates the role of the ET process in interfacial carrier dynamics and provides guidance for engineering interfaces for optoelectronic and quantum applications of TMD heterostructures.

6.
Brain Behav ; 10(7): e01655, 2020 07.
Article in English | MEDLINE | ID: mdl-32441492

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is a progressive neurodegenerative disease. It can lead to progressive cognitive impairment, memory loss, and behavioral alterations. So far, the exact cellular and molecular mechanisms underlying this disorder remain unclear. And there are no effective treatments to prevent, halt, or reverse AD. In recent years, Chinese traditional medicine has become a new force in the treatment of AD, and the typical representatives of natural herbal ingredients are curcumin and its derivatives. Bisdemethoxycurcumin (BDMC), which is a classical derivative of curcumin, was found to have neuroprotective effects against a cell model of Alzheimer's disease (AD) in our previous studies. This study investigated the intrinsic mechanism of BDMC against AD in animal models. METHODS: In this study, BDMC was injected into the lateral ventricles of normal C57BL/6 mice, APP/PS mice, and APP/PS mice treated with EX527 (the inhibitor of SIRT1). Y maze and Morris water maze were used to test the learning and memory ability of mice. Nissl staining was used to observe the morphological changes of neurons. Immunofluorescence staining was used to detect Aß deposition in mice. The activities of GSH and SOD were determined to observe the levels of oxidative stress in mice. And Western blot analyses were used to detect content of SIRT1 in mice. RESULTS: In the APP/PS mice, after BDMC intervention, their cognitive function improved, oxidative stress adjusted, the number of neurons increased, Aß deposition decreased, and the level of SIRT1 expression increased. However, when SIRT1 is inhibited, BDMC on the improvement in the learning and memory ability and the improvement on oxidative stress in APP/PS1 mice were reversed. CONCLUSION: Our findings demonstrated that in the AD mice, BDMC has antagonistic effect on AD. And an intermediate step in the antagonism effect is caused by SIRT1 upregulation, which leading to decreased oxidative stress. Based on these, we concluded that BDMC injection into the lateral ventricle can act against AD by upregulating SIRT1 to antioxidative stress.


Subject(s)
Alzheimer Disease/drug therapy , Diarylheptanoids/pharmacology , Disease Models, Animal , Oxidative Stress/drug effects , Sirtuin 1/metabolism , Alzheimer Disease/metabolism , Animals , Female , Male , Maze Learning/drug effects , Memory/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic
7.
Brain Behav ; 10(4): e01529, 2020 04.
Article in English | MEDLINE | ID: mdl-32106359

ABSTRACT

BACKGROUND AND PURPOSE: Radiation-induced brain injury (RBI) usually occurs six months to three years after irradiation, often shows cognitive dysfunction, epilepsy, and other neurological dysfunction. In severe cases, it can cause a wide range of cerebral edema, even herniation. It seriously threatens the survival of patients and their quality of life, and it becomes a key factor in limiting the radiation dose and lowering the therapeutic efficacy in recent years. Therefore, studying the pathogenesis of RBI and exploring new therapeutic targets are of great significance. METHODS: In our study, we observed the activation and secretory function in astrocytes as well as the intracellular signal transducer and activator of transcription 3 (STAT3) signal transduction pathway activation status after exposing different doses of X-ray irradiation by using MTT, Immunocytologic analysis, and Western blot analysis. Further, we used the same way to explore the role of vascular endothelial growth factor (VEGF) in signal transduction pathways playing in the activation of astrocytes after irradiating through the use of specificInhivascular endothelial growth factorbitors of STAT3. RESULTS: Ast can be directly activated, reactive hyperplasia and hypertrophy, the expression of the activation marker glial fibrillary acidic protein is increased, and the expression of vascular endothelial growth factor (VEGF) in the cells is increased, which may lead to RBI. After the addition of STAT3 pathway inhibitor, most of the Ast radiation activation was suppressed, and the expression of high-level expression of VEGF decreased after irradiation. CONCLUSION: Our findings demonstrated that X-ray irradiation directly induced the activation of astrocytes in a persistent manner and X-ray irradiation activated STAT3 signaling pathway. As the same time, we found that X-ray irradiation induced the activation of astrocytes and secretion cytokine. The STAT3 signaling pathway may participate in the pathogenesis of radiation-induced brain injury.


Subject(s)
Astrocytes/radiation effects , Radiation, Ionizing , STAT3 Transcription Factor/metabolism , Signal Transduction/radiation effects , Vascular Endothelial Growth Factor A/metabolism , Animals , Astrocytes/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/radiation effects , Glial Fibrillary Acidic Protein/metabolism , Rats , Rats, Sprague-Dawley
8.
CNS Neurosci Ther ; 26(2): 167-176, 2020 02.
Article in English | MEDLINE | ID: mdl-31423743

ABSTRACT

AIMS: Our previous study indicated that chronic stress caused autophagy impairment and subsequent neuron apoptosis in hippocampus. However, the mechanism underlying the stress-induced damage to neurons is unclear. In present work, we investigated whether stress-level glucocorticoids (GCs) GCs promoted PC12 cell damage via AMPK/mTOR signaling-mediated autophagy. METHODS: Chronic stress-induced PC12 cell injury model was built by treatment with high level corticosterone (CORT). Cell injury was evaluated by flow cytometry assay and transmission electron microscopy observation. RESULTS: Autophagy flux was measured based on the changes in LC3-II and P62 protein expressions, and the color alteration of mCherry-GFP-LC3-II transfection. Our results showed that CORT not only increased cell injury and apoptosis, but also dysregulated AMPK/mTOR signaling-mediated autophagy flux, as indicated by the upregulated expression of LC3-II and P62 proteins, and the lowered ration of autolysosomes to autophagosomes. Mechanistically, our results demonstrated that autophagy activation by AMPK activator metformin or mTOR inhibitor rapamycin obviously promotes cell survival and autophagy flux, improved mitochondrial ultrastructure, and reduced expression of Cyt-C and caspase-3 in CORT-induced PC12 cells. CONCLUSION: These results indicate that high CORT triggers PC12 cell damage through disrupting AMPK/mTOR-mediated autophagy flux. Targeting this signaling may be a promising approach to protect against high CORT and chronic stress-induced neuronal impairment.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy/drug effects , Corticosterone/toxicity , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/genetics , Animals , Apoptosis/drug effects , Enzyme Activation/drug effects , Flow Cytometry , Lysosomes/drug effects , Metformin/pharmacology , Microtubule-Associated Proteins/metabolism , PC12 Cells , Phagosomes/drug effects , Rats , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors
9.
Pain Res Manag ; 2019: 7890461, 2019.
Article in English | MEDLINE | ID: mdl-31531150

ABSTRACT

Several research studies have revealed that migraine has a solid link with gastrointestinal diseases especially irritable bowel syndrome (IBS). This study was carried out to investigate therapeutic potential of diet based on IgG elimination combined with probiotics on migraine plus irritable bowel syndrome. A total of 60 patients diagnosed with migraine plus IBS were recruited for the study. IgG antibodies against 266 food varieties were detected by ELISA. Then, the subjects were randomized into three groups for treatment of IgG elimination diet or probiotics or diet combined with probiotics. Migraine symptom, gut function score, medication use, and serum serotonin level were measured at baseline, 7 weeks, and 14 weeks. Improvement of migraine and gut symptom was achieved at a certain time point. Reduced use of over-the-counter- (OTC-) analgesics was seen in all groups. However, use of triptans did not show significant difference. An increased serum serotonin level was seen in subjects treated with elimination diet and elimination diet combined with probiotics. IgG elimination diet combined with probiotics may be beneficial to migraine plus IBS. It may provide new insight by understanding the intricate relationship between migraine and gastrointestinal diseases.


Subject(s)
Food Hypersensitivity/prevention & control , Irritable Bowel Syndrome/diet therapy , Migraine Disorders/diet therapy , Probiotics/therapeutic use , Adult , Double-Blind Method , Female , Humans , Immunoglobulin G/immunology , Irritable Bowel Syndrome/complications , Male , Middle Aged , Migraine Disorders/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...