Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Colloid Interface Sci ; 678(Pt C): 742-753, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39307062

ABSTRACT

The construction of ultra-close 2D atomic-thickness Van der Waals heterojunctions with high-speed charge transfer still faces challenges. Here, we synthesized single-layer ZnIn2S4 and g-C3N4, and introduced silver single atoms to regulate Van der Waals heterojunctions at the atomic level to optimize charge transfer and catalytic activity. At the atomic scale, the impact of detailed structural differences between the two characteristic surfaces of ZnIn2S4 ([Zn-S4] and [In-S4]) on catalytic performance has been first proposed. Experiments combined with the DFT study demonstrate that single atom Ag not only acts as a charge transfer bridge but also regulates the energy band and intrinsic catalytic activity. Benefiting from the enhanced electron delocalization, the synthesized catalyst ZIS/Ag@CN exhibits excellent photocatalytic performance, with a hydrogen production rate of 5.50 mmol·g-1·h-1, which is much higher than the reported Ag-based single-atom catalysts so far. This work provides a new understanding of atomic-level heterojunction interface regulation and modification.

2.
J Am Chem Soc ; 146(33): 23044-23053, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39126393

ABSTRACT

Li-alloying reactions facilitate the incorporation of a large number of Li atoms into the crystalline structures of electrodes, such as black phosphorus (BP). However, the reactions inevitably induce multistep phase transitions characterized by drastic atomic rearrangements and lattice collapse. Despite many theoretical and experimental studies on alloying mechanisms, long-term debates persist regarding the structures of the intermediate phases, the accurate pathways of phase transitions, the formation of specific configurations, and alloying/dealloying reversibility. Here, through a combination of operando electron diffraction measurements and ab initio simulations at the atomic and electronic scales, we identify key factors that govern the severe structural changes during alloying-dealloying reactions in BP. P-P bonds of three-bond P atoms are continuously broken during lithiation, generating two-bond P atoms with a high ability to accept inserted electrons and Li ions. Consequently, the pristine layered structure in BP is transformed to P7 cages in Li3P7, which then evolve to chain configurations in LiP and finally to isolated P atoms in Li3P. Specifically, the preferential formation of the P7 cage results from its lowest binding energy with three Li ions compared to other cage isomers. Furthermore, only LiP can be reversibly transformed to the crystalline structure of Li3P7 during charge, but it is thermodynamically favorable for Li3P7 and Li3P intermediates to be delithiated to amorphous structures. Our findings offer unique insights into the alloying mechanisms and deepen the fundamental understanding of alloying anode systems.

3.
J Am Chem Soc ; 146(7): 4752-4761, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38334447

ABSTRACT

Alloy anode materials have garnered unprecedented attention for potassium storage due to their high theoretical capacity. However, the substantial structural strain associated with deep potassiation results in serious electrode fragmentation and inadequate K-alloying reactions. Effectively reconciling the trade-off between low-strain and deep-potassiation in alloy anodes poses a considerable challenge due to the larger size of K-ions compared to Li/Na-ions. In this study, we propose a chemical bonding modulation strategy through single-atom modification to address the volume expansion of alloy anodes during potassiation. Using black phosphorus (BP) as a representative and generalizing to other alloy anodes, we established a robust P-S covalent bonding network via sulfur doping. This network exhibits sustained stability across discharge-charge cycles, elevating the modulus of K-P compounds by 74%, effectively withstanding the high strain induced by the potassiation process. Additionally, the bonding modulation reduces the formation energies of potassium phosphides, facilitating a deeper potassiation of the BP anode. As a result, the modified BP anode exhibits a high reversible capacity and extended operational lifespan, coupled with a high areal capacity. This work introduces a new perspective on overcoming the trade-off between low-strain and deep-potassiation in alloy anodes for the development of high-energy and stable potassium-ion batteries.

SELECTION OF CITATIONS
SEARCH DETAIL