Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Brain Circ ; 9(3): 148-153, 2023.
Article in English | MEDLINE | ID: mdl-38020950

ABSTRACT

This mini-review examines the management of atrial fibrillation (AF) in patients at high risk of bleeding, with a focus on stroke prevention and intracranial hemorrhage risk. Anticoagulant therapy is commonly advised for AF patients, but it can elevate the risk of intracranial hemorrhage in certain individuals prone to bleeding. Two primary perspectives for managing high-risk patients are discussed: adhering to strict anticoagulation therapy or opting for alternative treatments like left atrial appendage closure (LAAC) or aspirin. The benefits and drawbacks of each approach are evaluated, emphasizing the importance of a personalized management plan based on patient risk profiles, comorbidities, and preferences. Ongoing research, including artificial intelligence, advances in LAAC devices, and combination therapies, is explored to enhance stroke prevention and minimize bleeding risk in AF management. A multidisciplinary approach and continuous investigation are vital to achieving better patient outcomes and overall care in this context.

2.
Eur Heart J ; 44(29): 2713-2726, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37377039

ABSTRACT

AIMS: The variant p.Arg149Cys in ACTA2, which encodes smooth muscle cell (SMC)-specific α-actin, predisposes to thoracic aortic disease and early onset coronary artery disease in individuals without cardiovascular risk factors. This study investigated how this variant drives increased atherosclerosis. METHODS AND RESULTS: Apoe-/- mice with and without the variant were fed a high-fat diet for 12 weeks, followed by evaluation of atherosclerotic plaque formation and single-cell transcriptomics analysis. SMCs explanted from Acta2R149C/+ and wildtype (WT) ascending aortas were used to investigate atherosclerosis-associated SMC phenotypic modulation. Hyperlipidemic Acta2R149C/+Apoe-/- mice have a 2.5-fold increase in atherosclerotic plaque burden compared to Apoe-/- mice with no differences in serum lipid levels. At the cellular level, misfolding of the R149C α-actin activates heat shock factor 1, which increases endogenous cholesterol biosynthesis and intracellular cholesterol levels through increased HMG-CoA reductase (HMG-CoAR) expression and activity. The increased cellular cholesterol in Acta2R149C/+ SMCs induces endoplasmic reticulum stress and activates PERK-ATF4-KLF4 signaling to drive atherosclerosis-associated phenotypic modulation in the absence of exogenous cholesterol, while WT cells require higher levels of exogenous cholesterol to drive phenotypic modulation. Treatment with the HMG-CoAR inhibitor pravastatin successfully reverses the increased atherosclerotic plaque burden in Acta2R149C/+Apoe-/- mice. CONCLUSION: These data establish a novel mechanism by which a pathogenic missense variant in a smooth muscle-specific contractile protein predisposes to atherosclerosis in individuals without hypercholesterolemia or other risk factors. The results emphasize the role of increased intracellular cholesterol levels in driving SMC phenotypic modulation and atherosclerotic plaque burden.


Subject(s)
Atherosclerosis , Hyperlipidemias , Plaque, Atherosclerotic , Mice , Animals , Plaque, Atherosclerotic/complications , Actins/metabolism , Mice, Knockout, ApoE , Atherosclerosis/etiology , Cholesterol/metabolism , Hyperlipidemias/complications , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Muscle, Smooth/metabolism , Muscle, Smooth/pathology , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Mice, Inbred C57BL , Mice, Knockout
3.
Int J Mol Sci ; 24(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37047183

ABSTRACT

Enhanced renal sympathetic nerve activity (RSNA) contributes to obesity-induced renal disease, while the role of afferent renal nerve activity (ARNA) is not fully understood. The present study tested the hypothesis that activating the transient receptor potential vanilloid 1 (TRPV1) channel in afferent renal nerves suppresses RSNA and prevents renal dysfunction and hypertension in obese rats. N-oleoyldopamine (OLDA, 1 ng/kg, daily) was administrated intrathecally (T8-L3) via an indwelled catheter to chronically activate, TRPV1-positive afferent renal nerves in rats fed a chow diet or high-fat diet (HFD) for 8 weeks. HFD intake significantly increased the body weight, impaired glucose and insulin tolerance, decreased creatinine clearance, and elevated systolic blood pressure in rats compared with the levels of the chow-fed rats (all p < 0.05). An intrathecal OLDA treatment for 8 weeks did not affect the fasting glucose level, glucose tolerance, and insulin tolerance in rats fed either chow or HFD. As expected, the chronic OLDA treatment significantly increased the levels of plasma calcitonin gene-related peptide and substance P and ARNA in the HFD-fed rats (all p < 0.05). Interestingly, the OLDA treatment decreased the urinary norepinephrine level and RSNA in rats fed HFD (both p < 0.05). Importantly, the OLDA treatment attenuated HFD-induced decreases in creatinine clearance and urinary Na+ excretion and increases in the plasma urea level, urinary albumin level, and systolic blood pressure at the end of an 8-week treatment (all p < 0.05). Taken together, the intrathecal administration of OLDA ameliorates the enhancement of RSNA, renal dysfunction, and hypertension in obese rats. These findings shed light on the roles of TRPV1-positive renal afferent nerves in obesity-related renal dysfunction and hypertension.


Subject(s)
Hypertension , Insulins , Kidney Diseases , Animals , Rats , Creatinine , Diet, High-Fat , Glucose , Hypertension/prevention & control , Kidney/physiology , Kidney/innervation , Obesity/drug therapy , Obesity/etiology , TRPV Cation Channels/genetics
4.
Res Sq ; 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36909460

ABSTRACT

Missense variants throughout ACTA2, encoding smooth muscle α-actin (αSMA), predispose to adult onset thoracic aortic disease, but variants disrupting arginine 179 (R179) lead to Smooth Muscle Dysfunction Syndrome (SMDS) characterized by childhood-onset diverse vascular diseases. Our data indicate that αSMA localizes to the nucleus in wildtype (WT) smooth muscle cells (SMCs), enriches in the nucleus with SMC differentiation, and associates with chromatin remodeling complexes and SMC contractile gene promotors, and the ACTA2 p.R179 variant decreases nuclear localization of αSMA. SMCs explanted from a SMC-specific conditional knockin mouse model, Acta2SMC-R179/+, are less differentiated than WT SMCs, both in vitro and in vivo, and have global changes in chromatin accessibility. Induced pluripotent stem cells from patients with ACTA2 p.R179 variants fail to fully differentiate from neural crest cells to SMCs, and single cell transcriptomic analyses of an ACTA2 p.R179H patient's aortic tissue shows increased SMC plasticity. Thus, nuclear αSMA participates in SMC differentiation and loss of this nuclear activity occurs with ACTA2 p.R179 pathogenic variants.

5.
Nat Cardiovasc Res ; 2(10): 937-955, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38919852

ABSTRACT

Missense variants throughout ACTA2, encoding smooth muscle α-actin (αSMA), predispose to adult-onset thoracic aortic disease, but variants disrupting arginine 179 (R179) lead to Smooth Muscle Dysfunction Syndrome (SMDS) characterized by diverse childhood-onset vascular diseases. Here we show that αSMA localizes to the nucleus in wildtype (WT) smooth muscle cells (SMCs), enriches in the nucleus with SMC differentiation, and associates with chromatin remodeling complexes and SMC contractile gene promotors. The ACTA2 p.R179 αSMA variant shows decreased nuclear localization. Primary SMCs from Acta2 SMC-R179C/+ mice are less differentiated than WT SMCs in vitro and in vivo and have global changes in chromatin accessibility. Induced pluripotent stem cells from patients with ACTA2 p.R179 variants fail to fully differentiate from neuroectodermal progenitor cells to SMCs, and single-cell transcriptomic analyses of an ACTA2 p.R179H patient's aortic tissue show increased SMC plasticity. Thus, nuclear αSMA participates in SMC differentiation, and loss of this nuclear activity occurs with ACTA2 p.R179 pathogenic variants.

6.
Cells ; 11(24)2022 12 07.
Article in English | MEDLINE | ID: mdl-36552723

ABSTRACT

Transient receptor potential (TRP) channels belong to a superfamily of integral membrane proteins with diverse functions in sensory perception and cellular physiology [...].


Subject(s)
Cardiovascular System , Transient Receptor Potential Channels , Transient Receptor Potential Channels/metabolism , Cardiovascular System/metabolism , Sensation
7.
PLoS One ; 17(9): e0274618, 2022.
Article in English | MEDLINE | ID: mdl-36103570

ABSTRACT

Age-related cardiac fibrosis contributes to the development of heart failure with preserved ejection fraction which lacks ideal treatment. Transient receptor potential ankyrin 1 (TRPA1) is an oxidative stress sensor and could attenuate age-related pathologies in invertebrates. The present study aimed to test whether TRPA1 plays a role in age-related cardiac remodeling and dysfunction. The cardiac function and pathology of 12-week-old (young) and 52-week-old (older) Trpa1-/- mice and wild-type (WT) littermates were evaluated by echocardiography and histologic analyses. The expression levels of 84 fibrosis-related genes in the heart were measured by quantitative polymerase chain reaction array. Young Trpa1-/- and WT mice had similar left ventricular wall thickness, volume, and systolic and diastolic function. Older Trpa1-/- mice had significantly increased left ventricular internal diameter and volume and impaired systolic (lower left ventricular ejection fraction) and diastolic (higher E/A ratio and isovolumetric relaxation time) functions compared with older WT mice (P<0.05 or P<0.01). Importantly, older Trpa1-/- mice had enhanced cardiac fibrosis than older WT mice (P<0.05) while the two strains had similar degree of cardiac hypertrophy. Among the 84 fibrosis-related genes, Acta2, Inhbe, Ifng, and Ccl11 were significantly upregulated, while Timp3, Stat6, and Ilk were significantly downregulated in the heart of older Trpa1-/- mice compared with older WT mice. Taken together, we found that knocking out Trpa1 accelerated age-related myocardial fibrosis, ventricular dilation, and cardiac dysfunction. These findings suggest that TRPA1 may become a therapeutic target for preventing and/or treating cardiac fibrosis and heart failure with preserved ejection fraction in the elderly.


Subject(s)
Heart Failure , Ventricular Function, Left , Animals , Cardiomegaly , Fibrosis , Mice , Mice, Knockout , Stroke Volume/genetics , TRPA1 Cation Channel/genetics , Ventricular Function, Left/physiology
8.
Biochem Pharmacol ; 203: 115190, 2022 09.
Article in English | MEDLINE | ID: mdl-35905972

ABSTRACT

Western diet (WD) intake increases morbidity of obesity and salt-sensitive hypertension albeit mechanisms are largely unknown. We investigated the role of transient receptor potential vanilloid 1 (TRPV1) in WD intake-induced hypertension. TRPV1-/- and wild-type (WT) mice were fed a normal (CON) or Western diet (WD) for 16-18 weeks. Mean arterial pressure (MAP) after normal sodium glucose (NSG) loading with or without L-NAME (a NO synthase inhibitor) or N-oleoyldopamine (OLDA, a TRPV1agonist) was not different between the two strains on CON.WT or TRPV1-/- mice fed WD had increased MAP after NSG, with a greater magnitude in TRPV1-/- mice. OLDA decreased while L-NAME increased MAP in WT-WD but not in TRPV1-/--WD mice. The urinary nitrates plus nitrites excretion (UNOx), an indicator of renal NO production, was increased in both strains on CON after NSG. TRPV1 ablation with WD intake abolished NSG-induced increment in UNOx. OLDA further increased while L-NAME prevented NSG-induced increment in UNOx in WT-WD mice. Urinary sodium excretion was increased in both strains on CON and in WT-WD mice but not in TRPV1-/--WD mice after NSG. OLDA further increased while L-NAME prevented NSG-induced increases in sodium excretion in WT-WD but not in TRPV1-/--WD mice. Thus, TRPV1 ablation increases salt sensitivity during WD intake possibly via impaired renal NO production and sodium excretion. Activation of TRPV1 enhances renal NO production and sodium excretion, resulting in prevention of increased salt sensitivity during WD intake.


Subject(s)
Hypertension , Natriuresis , Animals , Diet, High-Fat , Mice , Mice, Knockout , NG-Nitroarginine Methyl Ester/pharmacology , Sodium , Sodium Chloride , TRPV Cation Channels/genetics
9.
J Biol Chem ; 297(6): 101228, 2021 12.
Article in English | MEDLINE | ID: mdl-34600884

ABSTRACT

Pathogenic variants of the gene for smooth muscle α-actin (ACTA2), which encodes smooth muscle (SM) α-actin, predispose to heritable thoracic aortic disease. The ACTA2 variant p.Arg149Cys (R149C) is the most common alteration; however, only 60% of carriers have a dissection or undergo repair of an aneurysm by 70 years of age. A mouse model of ACTA2 p.Arg149Cys was generated using CRISPR/Cas9 technology to determine the etiology of reduced penetrance. Acta2R149C/+ mice had significantly decreased aortic contraction compared with WT mice but did not form aortic aneurysms or dissections when followed to 24 months, even when hypertension was induced. In vitro motility assays found decreased interaction of mutant SM α-actin filaments with SM myosin. Polymerization studies using total internal reflection fluorescence microscopy showed enhanced nucleation of mutant SM α-actin by formin, which correlated with disorganized and reduced SM α-actin filaments in Acta2R149C/+ smooth muscle cells (SMCs). However, the most prominent molecular defect was the increased retention of mutant SM α-actin in the chaperonin-containing t-complex polypeptide folding complex, which was associated with reduced levels of mutant compared with WT SM α-actin in Acta2R149C/+ SMCs. These data indicate that Acta2R149C/+ mice do not develop thoracic aortic disease despite decreased contraction of aortic segments and disrupted SM α-actin filament formation and function in Acta2R149C/+ SMCs. Enhanced binding of mutant SM α-actin to chaperonin-containing t-complex polypeptide decreases the mutant actin versus WT monomer levels in Acta2R149C/+ SMCs, thus minimizing the effect of the mutation on SMC function and potentially preventing aortic disease in the Acta2R149C/+ mice.


Subject(s)
Actins/genetics , Aortic Diseases/genetics , Chaperonin Containing TCP-1/metabolism , Point Mutation , Actins/metabolism , Animals , Aorta/metabolism , Aorta/pathology , Aortic Diseases/metabolism , Aortic Diseases/pathology , Mice , Mice, Inbred C57BL , Mutation, Missense
10.
Cells ; 10(5)2021 05 18.
Article in English | MEDLINE | ID: mdl-34069822

ABSTRACT

Sodium salicylate (SA), a cyclooxygenase inhibitor, has been shown to increase insulin sensitivity and to suppress inflammation in obese patients and animal models. Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel expressed in afferent nerve fibers. Cyclooxygenase-derived prostaglandins are involved in the activation and sensitization of TRPV1. This study tested whether the metabolic and renal effects of SA were mediated by the TRPV1 channel. Wild-type (WT) and TRPV1-/- mice were fed a Western diet (WD) for 4 months and received SA infusion (120mg/kg/day) or vehicle for the last 4 weeks of WD feeding. SA treatment significantly increased blood pressure in WD-fed TRPV1-/- mice (p < 0.05) but not in WD-fed WT mice. Similarly, SA impaired renal blood flow in TRPV1-/- mice (p < 0.05) but not in WT mice. SA improved insulin and glucose tolerance in both WT and TRPV1-/- mice on WD (all p < 0.05). In addition, SA reduced renal p65 and urinary prostaglandin E2, prostaglandin F1α, and interleukin-6 in both WT and TRPV1-/- mice (all p < 0.05). SA decreased urine noradrenaline levels, increased afferent renal nerve activity, and improved baroreflex sensitivity in WT mice (all p < 0.05) but not in TRPV1-/- mice. Importantly, SA increased serum creatinine and urine kidney injury molecule-1 levels and decreased the glomerular filtration rate in obese WT mice (all p < 0.05), and these detrimental effects were significantly exacerbated in obese TRPV1-/- mice (all p < 0.05). Lastly, SA treatment increased urine albumin levels in TRPV1-/- mice (p < 0.05) but not in WT mice. Taken together, SA-elicited metabolic benefits and anti-inflammatory effects are independent of TRPV1, while SA-induced sympathetic suppression is dependent on TRPV1 channels. SA-induced renal dysfunction is dependent on intact TRPV1 channels. These findings suggest that SA needs to be cautiously used in patients with obesity or diabetes, as SA-induced renal dysfunction may be exacerbated due to impaired TRPV1 in obese and diabetic patients.


Subject(s)
Cyclooxygenase Inhibitors/toxicity , Diet, High-Fat , Kidney Diseases/chemically induced , Kidney/drug effects , Obesity/drug therapy , Sodium Salicylate/toxicity , Sympathetic Nervous System/drug effects , TRPV Cation Channels/deficiency , Animals , Baroreflex/drug effects , Disease Models, Animal , Energy Metabolism/drug effects , Gene Deletion , Glomerular Filtration Rate/drug effects , Hemodynamics/drug effects , Inflammation Mediators/metabolism , Insulin Resistance , Kidney/innervation , Kidney/metabolism , Kidney Diseases/metabolism , Kidney Diseases/physiopathology , Kidney Diseases/prevention & control , Mice, Inbred C57BL , Mice, Knockout , Obesity/complications , Obesity/metabolism , Obesity/physiopathology , Sympathetic Nervous System/metabolism , Sympathetic Nervous System/physiopathology , TRPV Cation Channels/genetics
11.
Pharmacol Res ; 169: 105681, 2021 07.
Article in English | MEDLINE | ID: mdl-34019979

ABSTRACT

Reports of the beneficial roles of butyrate in cardiovascular diseases, such as atherosclerosis and ischemic stroke, are becoming increasingly abundant. However, the mechanisms of its bioactivities remain largely unknown. In this study, we explored the effects of butyrate on endothelial dysfunction and its potential underlying mechanism. In our study, ApoE-/- mice were fed with high-fat diet (HFD) for ten weeks to produce atherosclerosis models and concurrently treated with or without sodium butyrate daily. Thoracic aortas were subsequently isolated from C57BL/6 wild-type (WT), PPARδ-/-, endothelial-specific PPARδ wild-type (EC-specific PPARδ WT) and endothelial-specific PPARδ knockout (EC-specific PPARδ KO) mice were stimulated with interleukin (IL)-1ß with or without butyrate ex vivo. Our results demonstrated that butyrate treatment rescued the impaired endothelium-dependent relaxations (EDRs) in thoracic aortas of HFD-fed ApoE-/- mice. Butyrate also rescued impaired EDRs in IL-1ß-treated thoracic aorta ring ex vivo. Global and endothelial-specific knockout of PPARδ eliminated the protective effects of butyrate against IL-1ß-induced impairment to EDRs. Butyrate abolished IL-1ß-induced reactive oxygen species (ROS) production in endothelial cells while the inhibitory effect was incapacitated by genetic deletion of PPARδ or pharmacological inhibition of PPARδ. IL-1ß increased NADPH oxidase 2 (NOX2) mRNA and protein expressions in endothelial cells, which were prevented by butyrate treatment, and the effects of butyrate were blunted following pharmacological inhibition of PPARδ. Importantly, butyrate treatment upregulated the miR-181b expression in atherosclerotic aortas and IL-1ß-treated endothelial cells. Moreover, transfection of endothelial cells with miR-181b inhibitor abolished the suppressive effects of butyrate on NOX2 expressions and ROS generation in endothelial cells. To conclude, butyrate prevents endothelial dysfunction in atherosclerosis by reducing endothelial NOX2 expression and ROS production via the PPARδ/miR-181b pathway.


Subject(s)
Butyrates/pharmacology , Endothelium, Vascular/drug effects , MicroRNAs/metabolism , PPAR gamma/metabolism , Signal Transduction/drug effects , Animals , Blotting, Western , Diet, High-Fat , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Relaxation/drug effects , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction
12.
Am J Hypertens ; 34(1): 110-116, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33005917

ABSTRACT

BACKGROUND: Classically activated macrophages contribute to the development of renal ischemia-reperfusion injury (IRI). This study aimed to investigate the role of transient receptor potential ankyrin 1 (Trpa1), a regulator of macrophage activation, in IRI-induced acute kidney injury (AKI) by using the Trpa1 gene knockout (Trpa1-/-) mouse model. METHODS: Male 8-week-old Trpa1-/- mice and wild-type (WT) littermates were subjected to renal ischemia for 35 minutes by clamping bilateral renal pedicles under isoflurane anesthesia, and blood and tissue samples were collected 24 hours after reperfusion and analyzed with histological and molecular measurements. RESULTS: Following IRI, Trpa1-/- mice developed more deteriorated biochemical and morphological signs of AKI when comparing with WT mice. More classically activated M1 macrophages were found in the kidneys of Trpa1-/- mice comparing with WT mice after IRI, while the counts of alternatively activated M2 macrophages in the kidney were similar between the 2 strains after IRI. Furthermore, significantly higher expression levels of proinflammatory markers including interleukin-1 beta and tumor necrosis factor alpha were detected in the kidney of Trpa1-/- mice compared with WT mice after IRI. The levels of TRPA1 protein in the kidney of WT mice were also decreased after IRI. CONCLUSIONS: Our results show that ablation of Trpa1 exacerbates infiltration of classically activated macrophages, renal inflammation, and renal injury in mice after IRI. These findings suggest that activation of TRPA1 may protect against IRI-induced AKI via regulation of macrophage-mediated inflammatory pathway.


Subject(s)
Hypertension , Inflammation/metabolism , Kidney , Macrophage Activation/immunology , Reperfusion Injury , TRPA1 Cation Channel/metabolism , Acute Kidney Injury/immunology , Acute Kidney Injury/metabolism , Acute Kidney Injury/physiopathology , Animals , Hypertension/immunology , Hypertension/metabolism , Hypertension/physiopathology , Immunologic Factors/analysis , Interleukin-1beta/metabolism , Kidney/metabolism , Kidney/physiopathology , Mice , Mice, Knockout , Protective Factors , Reperfusion Injury/immunology , Reperfusion Injury/metabolism , Reperfusion Injury/physiopathology , Tumor Necrosis Factor-alpha/metabolism
13.
Clin Exp Hypertens ; 43(3): 254-262, 2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33327798

ABSTRACT

Background: High-salt intake after renal ischemia/reperfusion (I/R) injury leads to hypertension and further renal injury, but the mechanisms are largely unknown. This study tested the hypothesis that degeneration of transient receptor potential vanilloid 1 (TRPV1)-positive nerves exacerbates salt-induced hypertension and renal injury after I/R via enhancing renal macrophage infiltration.Methods: Large dose of capsaicin (CAP, 100 mg/kg, subcutaneously) was used to degenerate rat TRPV1-positive nerves. Then, rats were subjected to renal I/R injury and fed with a low-salt (0.4% NaCl) diet for 5 weeks after I/R, followed by a high-salt (4% NaCl) diet for 4 weeks during which macrophages were depleted using liposome-encapsulated clodronate (LC, 1.3 ml/kg/week, intravenously).Results: The protein level of TRPV1 in the kidney was downregulated by renal I/R injury and was further decreased by CAP treatment. LC treatment did not affect the protein levels of renal TRPV1. After renal I/R injury, high-salt diet significantly increased renal macrophage infiltration, inflammatory cytokines (tumor necrosis factor-alpha and interleukin 1 beta), systolic blood pressure, the urine/water intake ratio, plasma creatine and urea levels, urinary 8-isoprostane, and renal collagen deposition. Interestingly, CAP treatment further increased these parameters. These increases were abolished by depleting macrophages with LC treatment.Conclusions: These data suggest that degenerating TRPV1-positive nerves exacerbates salt-induced hypertension and tissue injury in rats after renal I/R injury via macrophages-mediated renal inflammation.


Subject(s)
Hypertension/pathology , Macrophages/pathology , Nerve Tissue/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Sodium Chloride, Dietary/adverse effects , TRPV Cation Channels/metabolism , Animals , Blood Pressure/drug effects , Capsaicin , Clodronic Acid/pharmacology , Fibrosis , Hypertension/physiopathology , Inflammation/pathology , Interleukin-1beta/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Kidney/physiopathology , Macrophages/metabolism , Male , Nerve Tissue/drug effects , Nerve Tissue/pathology , Oxidative Stress/drug effects , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism
14.
In Vivo ; 34(5): 2259-2268, 2020.
Article in English | MEDLINE | ID: mdl-32871748

ABSTRACT

BACKGROUND/AIM: Transient receptor potential vanilloid type 1 (TRPV1) has anti-inflammatory properties. The present study aimed to investigate the role of TRPV1 in renal inflammatory responses and tissue injury following renal ischemia-reperfusion (I/R) in diet-induced obese mice. MATERIALS AND METHODS: TRPV1 knockout and wild type mice were fed a normal or western diet (WD) for 23 weeks and were then subjected to renal I/R injury. RESULTS: TRPV1 knockout mice showed enhanced WD-induced renal macrophage infiltration and collagen deposition. Knocking out TRPV1 exacerbated renal I/R-induced increase of malondialdehyde, interleukin-6, monocyte chemoattractant protein-1, and NF-ĸB in obese mice. Similar results were observed in the expression of phosphorylated Smad1 and Smad2/3. Blockade of calcitonin gene-related peptide (CGRP) receptors with CGRP8-37 worsened the I/R-induced renal inflammation and injury. CONCLUSION: Our data indicate that preserving TRPV1 expression and function may prevent renal I/R injury in obesity likely through alleviating inflammatory responses.


Subject(s)
Reperfusion Injury , TRPV Cation Channels , Animals , Inflammation/genetics , Ischemia , Mice , Mice, Knockout , Mice, Obese , Reperfusion , Reperfusion Injury/complications , Reperfusion Injury/genetics , TRPV Cation Channels/genetics
15.
Curr Hypertens Rev ; 16(2): 148-155, 2020.
Article in English | MEDLINE | ID: mdl-31721716

ABSTRACT

BACKGROUND: Salt sensitivity is increased following renal Ischemia-Reperfusion (I/R) injury. We tested the hypothesis that high salt intake induced increase in Renal Sympathetic Nerve Activity (RSNA) after renal I/R can be prevented by activation of Transient Receptor Potential Vanilloid 1 (TRPV1). METHODS: Rats were fed a 0.4% NaCl diet for 5 weeks after renal I/R, followed by a 4% NaCl diet for 4 more weeks in four groups: sham, I/R, I/R +High Dose Capsaicin (HDC), and I/R+Low Dose Capsaicin (LDC). The low (1mg/kg) or high (100mg/kg) dose of capsaicin was injected subcutaneously before I/R to activate or desensitize TRPV1, respectively. RESULTS: Systolic blood pressure was gradually elevated after fed on a high-salt diet in the I/R and I/R+HDC groups but not in the I/R+LDC group, with a greater increase in the I/R+HDC group. Renal function was impaired in the I/R group and was further deteriorated in the I/R+HDC group but was unchanged in the I/R+LDC group. At the end of high salt treatment, afferent renal nerve activity in response to unilateral intra-pelvic administration of capsaicin was decreased in the I/R group and was further suppressed in the I/R+HDC group but was unchanged in the I/R+LDC group. RSNA in response to intrathecal administration of muscimol, a selective agonist of GABA-A receptors, was augmented in the I/R group and further intensified in the I/R+HDC group but was unchanged in the I/R+LDC group. Similarly, urinary norepinephrine levels were increased in the I/R group and were further elevated in the I/R+HDC group but unchanged in the I/R+LDC group. CONCLUSION: These data suggest that TRPV1 activation prevents renal I/R injury-induced increase in salt sensitivity by suppressing RSNA.


Subject(s)
Blood Pressure/drug effects , Capsaicin/pharmacology , Hypertension/prevention & control , Kidney/innervation , Reperfusion Injury/prevention & control , Sensory System Agents/pharmacology , Sodium Chloride, Dietary , Sympathetic Nervous System/drug effects , TRPV Cation Channels/agonists , Animals , Disease Models, Animal , Hypertension/etiology , Hypertension/metabolism , Hypertension/physiopathology , Male , Rats, Wistar , Reperfusion Injury/etiology , Reperfusion Injury/metabolism , Reperfusion Injury/physiopathology , Sympathetic Nervous System/metabolism , Sympathetic Nervous System/physiopathology , TRPV Cation Channels/metabolism
16.
Clin Exp Hypertens ; 42(5): 469-478, 2020 Jul 03.
Article in English | MEDLINE | ID: mdl-31851528

ABSTRACT

Background: Arterial pressure volume index (API) and arterial velocity pulse index (AVI) contribute to the development of vascular damage and cardiovascular disease. However, the relationship between common API/AVI trajectories and cardiovascular outcomes in hypertensive patients with heart failure with preserved ejection fraction (HFpEF) is unknown.Methods: A total of 488 consecutive hypertensive patients with HFpEF who repeatedly underwent API/AVI measurements were prospectively examined. We then applied API/AVI measurements into actual clinical practice. Latent mixture modeling was performed to identify API/AVI trajectories. Hazards ratios (HRs) were measured using Cox proportional hazard models.Results: We identified four distinct API/AVI trajectory patterns: low (7.6%), moderate (43.8%), high (28.9%), and very high (19.7%). Compared with the low group, higher API trajectories were associated with increased risk of total cardiovascular events (high group, adjusted HR: 2.91, 95% confidence interval [CI]: 1.97-4.26; very high group, adjusted HR: 2.46, 95%CI: 1.18-3.79). Consistently, higher AVI trajectories were also associated with a higher risk of total cardiovascular events (high group, adjusted HR: 2.58, 95%CI: 1.23-5.47; very high group, adjusted HR: 3.12, 95%CI: 1.83-6.08), compared with the low trajectory group.Conclusion: High API/AVI trajectories are strong predictors of cardiovascular risk in hypertensive patients with HFpEF. Among these patients, measuring API/AVI may improve risk stratification and provide additional information to tailor treatment strategies.


Subject(s)
Arterial Pressure , Arteries/physiopathology , Heart Failure , Hypertension , Pulse Wave Analysis/methods , Stroke Volume , Aged , China/epidemiology , Female , Follow-Up Studies , Heart Failure/diagnosis , Heart Failure/epidemiology , Heart Failure/physiopathology , Humans , Hypertension/diagnosis , Hypertension/epidemiology , Hypertension/physiopathology , Male , Middle Aged , Prognosis , Risk Assessment/methods , Risk Factors , Vascular Stiffness/physiology
17.
Article in English | MEDLINE | ID: mdl-31513001

ABSTRACT

BACKGROUND: Activation of Transient Receptor Potential Vanilloid Subtype 1 (TRPV1) channels protects the heart from Ischemia/Reperfusion (I/R) injury through releasing Calcitonin Gene-Related Peptide (CGRP) and Substance P (SP). The current study aimed to study the cardioprotective effects of TRPV1 in obesity. METHODS: TRPV1 gene knockout (TRPV1-/-) and Wild-Type (WT) mice were Fed a High-Fat Diet (HFD) or a control diet or for 20 weeks, and then the hearts were collected for I/R injury ex vivo. The hearts were mounted on a Langendorff apparatus and subjected to ischemia (30 min) and reperfusion (40 min) after incubated with capsaicin (10 nmol/L), CGRP (0.1 µmol/L) and SP (0.1 µmol/L). Then, Coronary Flow (CF), left ventricular peak positive dP/dt (+dP/dt), Left Ventricular Developed Pressure (LVDP) and Left Ventricular End-Diastolic Pressure (LVEDP) were measured. RESULTS: HFD intake remarkably reduced CF, +dP/dt and LVDP and elevated LVEDP in both strains (P<0.05). Treatment with capsaicin decreased infarct size, increased CF, +dP/dt and LVDP, and decreased LVEDP in WT mice on control diet (P<0.05), but did not do so in other three groups. Treatment with CGRP and SP decreased infarct size in both strains fed with control diet (P<0.05). In contrast, not all the parameters of cardiac postischemic recovery in HFD-fed WT and TRPV1-/- mice were improved by CGRP and SP. CONCLUSION: These results suggest that HFD intake impairs cardiac postischemic recovery. HFDinduced impairment of recovery is alleviated by CGRP in both strains and by SP only in TRPV1-/- mice, indicating that the effects of CGRP and SP are differentially regulated during HFD intake.


Subject(s)
Myocardial Reperfusion Injury/metabolism , Obesity/metabolism , TRPV Cation Channels/metabolism , Animals , Blood Glucose/metabolism , Capsaicin/pharmacology , Diet, High-Fat , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Reperfusion Injury/genetics , TRPV Cation Channels/agonists , TRPV Cation Channels/genetics
18.
Exp Ther Med ; 18(5): 3636-3642, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31602241

ABSTRACT

This study tests the hypothesis that the lipoxygenase (LOX) pathway mediates protease-activated receptor (PAR) 2-induced activation of the transient receptor potential vanilloid receptor 1 (TRPV1) to protect the heart from ischemia/reperfusion (I/R) injury. SLIGRL, a PAR2 activating peptide, was administered prior to reperfusion following left anterior descending coronary artery ligation in wild type (WT) and TRPV1 knockout (TRPV1-/-) mice. In a Langendorffly perfused heart I/R model, hemodynamic parameters, including left ventricular end-diastolic pressure, left ventricular developed pressure, coronary blood flow and left ventricular peak +dP/dt were evaluated after I/R. SLIGRL reduced the cardiac infarct size in WT and TRPV1-/- mice with a greater effect in the former strain (P<0.05). SLIGRL increased plasma levels of calcitonin gene-related peptide (CGRP) and substance P in WT (both P<0.05) but not in TRPV1-/- mice. Pretreatment with CGRP8-37 (a CGRP receptor antagonist) or RP67580 (a neurokinin-1 receptor antagonist) alone had no effect on SLIGRL-induced cardiac protection in either strain. However, combined administration of CGRP8-37 and RP67580 abolished SLIGRL-induced cardiac protection in WT but not in TRPV1-/- mice. Nordihydroguaiaretic acid (a general LOX inhibitor) and baicalein (a 12-LOX inhibitor), but not indomethacin (a cyclooxygenase inhibitor) and hexanamide (a selective cytochrome P450 epoxygenase inhibitor), abolished the protective effects of SLIGRL in WT (all P<0.05) but not in TRPV1-/- hearts. These data suggested that PAR2, possibly via 12-LOX, activates TRPV1 and leads to CGRP and substance P release to prevent I/R injury in the heart, indicating that the 12-LOX-TRPV1 pathway conveys cardiac protection to alleviate myocardial infarction.

19.
In Vivo ; 33(5): 1431-1437, 2019.
Article in English | MEDLINE | ID: mdl-31471389

ABSTRACT

BACKGROUND/AIM: Transient receptor potential vanilloid 1 (TRPV1)-expressing sensory nerves innervate the pancreatic islets. Sensory neuropeptides, including calcitonin gene-related peptide (CGRP) and substance P (SP), participate in insulin secretion. This study aimed to investigate the role of TRPV1 in glucose-induced insulin secretion. MATERIALS AND METHODS: TRPV1-/- and wild-type (WT) mice were fed a normal diet for 24 weeks. Glucose tolerance and insulin secretion were measured at the end of the experiments. RESULTS: TRPV1-/- mice had greater impairments in glucose tolerance and higher decrease in glucose-induced insulin secretion than WT mice. Capsaicin (a TRPV1 agonist) increased insulin secretion in WT, but not in TRPV1-/- mice. Glucose-induced insulin secretion was blunted in TRPV1-/- mice, and was attenuated by AMG9810 (a TRPV1 inhibitor), CGRP8-37 (a CGRP receptor antagonist), or RP67580 (a NK-1 receptor antagonist) in WT mice. Glucose-induced SP and CGRP release from WT pancreas was higher than that from TRPV1-/- pancreas. CONCLUSION: TRPV1 mediates glucose-induced insulin secretion likely through CGRP and SP release.


Subject(s)
Glucose/metabolism , Insulin Secretion , Neuropeptides/metabolism , TRPV Cation Channels/metabolism , Animals , Glucose Intolerance , Male , Mice , Mice, Knockout , TRPV Cation Channels/genetics
20.
Am J Physiol Renal Physiol ; 317(3): F623-F631, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31339777

ABSTRACT

Macrophage-mediated inflammation plays a critical role in hypertensive kidney disease. Here, we investigated the role of transient receptor potential ankyrin 1 (TRPA1), a sensor of inflammation, in angiotensin II (ANG II)-induced renal injury. Subcutaneous infusion of ANG II (600 ng·min-1·kg-1) for 28 days was used to induce hypertension and renal injury in mice. The results showed that ANG II-induced hypertensive mice have decreased renal Trpa1 expression (P < 0.01), whereas ANG II receptor type 1a-deficient hypotensive mice have increased renal Trpa1 expression (P < 0.05) compared with their normotensive counterparts. ANG II induced similar elevations of systolic blood pressure in Trpa1-/- and wild-type (WT) mice but led to higher levels of blood urea nitrogen (P < 0.05), serum creatinine (P < 0.05), and renal fibrosis (P < 0.01) in Trpa1-/- mice than WT mice. Similarly, ANG II increased both CD68+/inducible nitric oxide synthase+ M1 and CD68+/arginase 1+ M2 macrophages in the kidneys of both Trpa1-/- and WT mice (all P < 0.01), with higher extents in Trpa1-/- mice (both P < 0.01). Compared with WT mice, Trpa1-/- mice had significantly increased expression levels of inflammatory cytokines and their receptors in the kidney. Cultured murine macrophages were stimulated with phorbol 12-myristate 13-acetate, which downregulated gene expression of TRPA1 (P < 0.01). A TRPA1 agonist, cinnamaldehyde, significantly inhibited phorbol 12-myristate 13-acetate-stimulated expression of IL-1ß and chemokine (C-C motif) ligand 2 in macrophages, which were attenuated by pretreatment with a TRPA1 antagonist, HC030031. Furthermore, activation of TRPA1 with cinnamaldehyde induced apoptosis of macrophages. These findings suggest that TRPA1 may play a protective role in ANG II-induced renal injury, likely through inhibiting macrophage-mediated inflammation.


Subject(s)
Angiotensin II , Hypertension/chemically induced , Kidney Diseases/etiology , Kidney/metabolism , Macrophages/metabolism , TRPA1 Cation Channel/deficiency , Animals , Apoptosis , Biomarkers/blood , Blood Pressure , Blood Urea Nitrogen , Creatinine/blood , Cytokines/metabolism , Disease Models, Animal , Fibrosis , Gene Knockdown Techniques , Hypertension/physiopathology , Kidney/pathology , Kidney Diseases/genetics , Kidney Diseases/metabolism , Kidney Diseases/pathology , Macrophage Activation , Macrophages/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , RAW 264.7 Cells , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , TRPA1 Cation Channel/genetics
SELECTION OF CITATIONS
SEARCH DETAIL