Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 325: 117856, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38316220

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hua Zhuo Ning Fu Decoction (HZD) is an empirical prescription from traditional Chinese medicine that shows excellent clinical results for psoriasis patients. Uncertainty lingered over HZD's potential anti-psoriasis mechanisms. AIM OF THE STUDY: The study's objective is to investigate the pharmacological processes and therapeutic effects of HZD on psoriasis. MATERIALS AND METHODS: In the initial phase of the study, an investigation was conducted to assess the effects of HZD on psoriasis-afflicted mice using an imiquimod (IMQ)-induced murine model. The experimental mice were randomly allocated to different groups, including the IMQ-induced model group, the control group, the HZD therapy groups with varying dosage levels (low, medium, and high), and Dexamethasone (DEX, the positive control medicine) group. Bioinformatics analysis and molecular docking were subsequently employed to identify the primary components and molecular targets associated with the therapeutic action of HZD in the context of psoriasis. Additionally, to find the impacts on metabolite regulation, plasma metabolomics based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was used. It's interesting to note that the combined mechanisms from metabolomics were examined in tandem with the targets. In vivo tests were the last step in validating the potential mechanism. Throughout the trial, the following data were recorded: body weight, psoriasis area and severity index (PASI). The molecular targets connected to HZD's anti-psoriasis activities were revealed using histological examination, western blot (WB), and ELISA investigation. RESULTS: In mice induced with IMQ, HZD shown good anti-psoriasis effects in terms of PASI score and epidermal acanthosis. 95 HZD targets and 77 bioactive chemicals connected to psoriasis were found by bioinformatics research; of these, 7 key targets (EPHX2, PLA2G2A, TBXAS1, MAOA, ALDH1A3, ADH1A, and ADH1B) were linked to the mechanisms of HZD, the combination degree of which was finally expressed by the score of docking. In addition, HZD regulated nine metabolites. In line with this, HZD modified three metabolic pathways. Additionally, a combined examination of 7 key targets and 9 metabolites suggested that the metabolism of arachidonic acid might be the key metabolic route, which was identified by ELISA analysis. The in vivo investigation shown that HZD could control cytokines associated to inflammation (IL-10, TGF-ß, IL-17A, and IL-23), as well as important antioxidant system markers (ROS, GSH, and MDA). Moreover, HZD controlled iron levels and the expression of ferroptosis-related proteins (ACSL4 and GPX4), suggesting that ferroptosis played a crucial role in this process. CONCLUSIONS: Our findings demonstrated the whole mechanism and anti-psoriasis effectiveness of HZD, which will promote its clinical application and aid in the investigation of new bioactive components of HZD against psoriasis.


Subject(s)
Drugs, Chinese Herbal , Psoriasis , Humans , Mice , Animals , Molecular Docking Simulation , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/pathology , Medicine, Chinese Traditional , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Metabolomics , Imiquimod , Computational Biology
2.
Neurosci Bull ; 40(1): 35-49, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37608137

ABSTRACT

Acute hypobaric hypoxic brain damage is a potentially fatal high-altitude sickness. Autophagy plays a critical role in ischemic brain injury, but its role in hypobaric hypoxia (HH) remains unknown. Here we used an HH chamber to demonstrate that acute HH exposure impairs autophagic activity in both the early and late stages of the mouse brain, and is partially responsible for HH-induced oxidative stress, neuronal loss, and brain damage. The autophagic agonist rapamycin only promotes the initiation of autophagy. By proteome analysis, a screen showed that protein dynamin2 (DNM2) potentially regulates autophagic flux. Overexpression of DNM2 significantly increased the formation of autolysosomes, thus maintaining autophagic flux in combination with rapamycin. Furthermore, the enhancement of autophagic activity attenuated oxidative stress and neurological deficits after HH exposure. These results contribute to evidence supporting the conclusion that DNM2-mediated autophagic flux represents a new therapeutic target in HH-induced brain damage.


Subject(s)
Hypoxia , Oxidative Stress , Mice , Animals , Autophagy , Cognition , Sirolimus/therapeutic use
3.
Front Microbiol ; 14: 1331434, 2023.
Article in English | MEDLINE | ID: mdl-38274750

ABSTRACT

Important tick-borne diseases include spotted fever group Rickettsia (SFGR), Anaplasma, and Ehrlichia, which cause harm to animal and human health. Ixodidae are the primary vectors of these pathogens. We aimed to analyze the prevalence and genetic diversity of SFGR, Anaplasma, and Ehrlichia species in the Ixodidae in Shaanxi Province, China. Herein, 1,113 adult Ixodidae ticks were collected from domestic cattle and goats, and detected using nested PCR. A total of four Ixodidae species were collected and Ca. R. jingxinensis (20.58%, 229/1113), A. bovis (3.05%, 34/1113), A. capra (3.32%, 37/1113), A. marginale (0.18%, 2/1113), E. sp. Yonaguni138 (0.18%, 2/1113), and a potent novel Ehrlichia species named E. sp. Baoji96 (0.09%, 1/1113) were detected. A. marginale was detected for the first time in Rhipicephalus microplus. E. sp. Baoji96 was closely related to E. chaffeensis and was first identified in Haemaphysalis longicornis. In addition, co-infection with two Rickettsiales pathogens within an individual tick was detected in 10 (1.54%) ticks. This study provides a reference for the formulation of biological control strategies for ticks and tick-borne diseases in Shaanxi Province, and could lead to an improved control effect.

4.
Materials (Basel) ; 12(16)2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31426319

ABSTRACT

In order to study the effect of nano-CeO2 particles doping on the electrochemical corrosion behavior of pure Ni-Fe-Co-P alloy coating, Ni-Fe-Co-P-CeO2 composite coating is prepared on the surface of 45 steel by scanning electrodeposition. The morphology, composition, and phase structure of the composite coating are analyzed by means of scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The corrosion behavior of the coatings with different concentrations of nano-CeO2 particles in 50 g/L NaCl solution is studied by Tafel polarization curve and electrochemical impedance spectroscopy. The corrosion mechanism is discussed. The experimental results show that the obtained Ni-Fe-Co-P-CeO2 composite coating is amorphous, and the addition of nano-CeO2 particles increases the mass fraction of P. With the increase of the concentration of nano-CeO2 particles in the plating solution, the surface flatness of the coating increases. The surface of Ni-Fe-Co-P-1 g/L CeO2 composite coating is uniform and dense, and its self-corrosion potential is the most positive; the corrosion current and corrosion rate are the smallest, and the charge transfer resistance is the largest, showing the best corrosion resistance.

5.
Cell Physiol Biochem ; 46(6): 2311-2324, 2018.
Article in English | MEDLINE | ID: mdl-29734176

ABSTRACT

BACKGROUND/AIMS: Autophagy is essential for maintaining cellular homeostasis and the survival of terminally differentiated cells as neurons. In this study, we aim to investigate whether mitofusin 2, a mitochondrial fusion protein, mediates autophagy in cerebral ischemia/reperfusion (I/R) injury. METHODS: Primary cultured neurons were treated with oxygen-glucose deprivation/reperfusion to mimic cerebral I/R injury in vitro. Autophagosomes were visualized upon TEM. Autophagy-markers were then detected to monitor autophagy by western-blot and real-time PCR, and the autophagic flux was tracked with a mRFP-GFP-LC3 construct by fluorescence as well as autophagy inhibitors and agonists. The up- and downregulation of Mfn2 were through transfecting a lentivirusexpression vector respectively. And neuronal injury was detected by cell counting kit and TUNEL assay. RESULTS: Results showed I/R increased autophagosome formation and inhibited autolysosome degradation. Furthermore, use of autophagy related agents demonstrated that I/R injury was caused by insufficient autophagy and aggravated by impaired autophagic degradation. The results also indicated that mitofusin 2 could ameliorate I/R injury through increasing autophagosome formation and promoting the fusion of autophagosomes and lysosomes. In contrast, downregulation of mitofusin 2 aggravated the I/R injury by inhibiting autophagosome formation and the fusion of autophagosomes and lysosomes. Additionly, mitofusin 2 overexpression did not lead to autolysosome accumulation induced by I/R. CONCLUSIONS: In summary, this study explicitly demonstrated that mitofusin 2 could ameliorate I/R injury mainly through promoting autophagy, which represented a potential novel strategy for neuroprotection against cerebral I/R damage.


Subject(s)
Autophagy , Brain Ischemia/metabolism , GTP Phosphohydrolases/metabolism , Reperfusion Injury/metabolism , Animals , Brain Ischemia/pathology , Cells, Cultured , Female , Mice, Inbred C57BL , Neurons/metabolism , Neurons/pathology , Neuroprotection , Reperfusion Injury/pathology
6.
Front Neurosci ; 12: 51, 2018.
Article in English | MEDLINE | ID: mdl-29479301

ABSTRACT

Neuronal oxidative stress is involved in diverse neurological disorders. Homer1a, as an important member of the Homer family and localized at the postsynaptic density, is known to protect cells against oxidative injury. However, the exact neuroprotective mechanism of Homer1a has not been fully elucidated. Here, we found that Homer1a promoted cell viability and reduced H2O2-induced LDH release. The overexpression of Homer1a enhanced autophagy after H2O2 treatment, which was confirmed by increased expression of LC3II, Beclin-1, and greater autophagosome formation. In addition, we demonstrated that activating autophagy improved cell survival and reduced H2O2-induced oxidative stress and mitochondrial damage. Moreover, the autophagy inhibitor 3-MA partially prevented the protective effects of Homer1a against oxidative challenge. We also found that the upregulation of Homer1a after H2O2 treatment increased the phosphorylation of AMPK. Furthermore, the AMPK inhibitor compound C inhibited Homer1a-induced autophagy and abolished Homer1a-mediated neuroprotection. All the above data suggests that Homer1a confers protection against H2O2-induced oxidative damage via AMPK-dependent autophagy.

7.
Biochem Biophys Res Commun ; 495(1): 1187-1194, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29183728

ABSTRACT

Lycium barbarum polysaccharide (LBP) is the main active ingredient of Lycium barbarum, which exhibits several beneficial effects, including neuroprotection, anti-aging and anti-oxidation. However, the mechanism by which LBP protects against cerebral ischemia/reperfusion-induced injury remains obscure. In this study, we found that LBP pretreatment greatly attenuated oxygen glucose deprivation/reperfusion (OGD/R) injury in primary cultured hippocampal neurons. LBP also suppressed OGD/R-induced lactate dehydrogenase (LDH) leakage, and ameliorated oxidative stress. In addition, LBP significantly reduced OGD/R-induced apoptosis and autophagic cell death. LBP caused the down-regulation of cleaved Caspase-3/Caspase-3, LC3II/LC3I and Beclin 1, as well as up-regulation of Bcl-2/Bax and p62. Furthermore, mechanistic studies indicated that LBP pretreatment increased p-Akt and p-mTOR levels after OGD/R. In summary, our results indicated that LBP protects against OGD/R-induced neuronal injury in primary hippocampal neurons by activating the PI3K/Akt/mTOR signaling pathway.


Subject(s)
Drugs, Chinese Herbal/administration & dosage , Glucose/metabolism , Neurons/cytology , Neurons/physiology , Oxygen/metabolism , Animals , Antioxidants/administration & dosage , Apoptosis/drug effects , Apoptosis/physiology , Autophagy/genetics , Autophagy/physiology , Cells, Cultured , Dose-Response Relationship, Drug , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/physiology , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neuroprotective Agents/administration & dosage , Oncogene Protein v-akt/metabolism , Oxidative Stress/drug effects , Oxidative Stress/physiology , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/physiology , TOR Serine-Threonine Kinases/metabolism
8.
Front Cell Neurosci ; 11: 59, 2017.
Article in English | MEDLINE | ID: mdl-28321181

ABSTRACT

Glutamate induced excitotoxicity is common in diverse neurological disorders. RNF146 as an E3 ubiquitin ligase protects neurons against excitotoxicity via interfering with Poly (ADP-ribose) (PAR) polymer-induced cell death (parthanatos). However, the neuroprotective role of RNF146 has not been fully understood. We aimed to investigate the role of RNF146 in modulating autophagy in HT22 cells under glutamate excitotoxicity injury. Here we found that induction of RNF146 decreased the cellular damage and excitotoxicity induced by glutamate. RNF146 also suppressed the excessive autophagy, which is detrimental to HT22 cells survival, induced by glutamate or rapamycin treatment. In addition, we find that Wnt/ß-catenin was a negative regulation factor for autophagy in glutamate excitotoxicity. Over-expression of RNF146 promoted Wnt/ß-catenin signaling, which was related to destabilization of ß-catenin destruction complex. These results indicated that RNF146 acted as a neuroprotective agent against glutamate-induced excitatory damage, and this neuroprotection might be at least partly dependent on the inhibition of excessive autophagy by regulating Wnt/ß-catenin signaling.

SELECTION OF CITATIONS
SEARCH DETAIL
...