Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 327, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717623

ABSTRACT

Regulatory T cells (Tregs) are a subset of T cells participating in a variety of diseases including mycoplasmal pneumonia, contagious ecthyma, and so on. The role of Tregs in goat contagious ecthyma is not completely understood due to the lack of species-specific antibodies. Here, we developed a combination of CD4 and CD25 fluorescence monoclonal antibodies (mAb) to recognize goat Tregs and assessed its utility in flow cytometry, immunofluorescence staining. Using immunofluorescence staining, we found that the frequency of Treg cells was positively correlated with the viral load during orf virus infection. These antibodies could serve as important tools to monitor Tregs during orf virus infection in goats. KEY POINTS: • A combination of fluorescent mAbs (C11 and D12) was prepared for the detection of goat Tregs. • C11 and D12 are effective in flow cytometry, immunofluorescence staining, and C11 has excellent species specificity. • The frequency of Treg cells was positively correlated with the viral load during orf virus infection.


Subject(s)
Antibodies, Monoclonal , Flow Cytometry , Goats , T-Lymphocytes, Regulatory , Viral Load , Animals , T-Lymphocytes, Regulatory/immunology , Antibodies, Monoclonal/immunology , Ecthyma, Contagious/diagnosis , Ecthyma, Contagious/immunology , Interleukin-2 Receptor alpha Subunit/immunology , Orf virus/immunology , Fluorescent Antibody Technique/methods , CD4 Antigens/immunology , Goat Diseases/immunology , Goat Diseases/virology , Goat Diseases/diagnosis
2.
Article in English | MEDLINE | ID: mdl-38776048

ABSTRACT

Exosomes, nano-sized small extracellular vesicles, have been shown to serve as mediators between intercellular communications by transferring bioactive molecules, such as non-coding RNA, proteins, and lipids from secretory to recipient cells, modulating a variety of physiological and pathophysiological processes. Recent studies have gradually demonstrated that altered exosome charges may represent a key mechanism driving the pathological process of ferroptosis. This review summarizes the potential mechanisms and signal pathways relevant to ferroptosis and then discusses the roles of exosome in ferroptosis. As well as transporting iron, exosomes may also indirectly convey factors related to ferroptosis. Furthermore, ferroptosis may be transmitted to adjacent cells through exosomes, resulting in cascading effects. It is expected that further research on exosomes will be conducted to explore their potential in ferroptosis and will lead to the creation of new therapeutic avenues for clinical diseases.

3.
J Thorac Dis ; 16(4): 2443-2459, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38738236

ABSTRACT

Background: Myocardial infarction (MI) is one of the most lethal cardiovascular diseases. The loss of cardiomyocytes and the degradation of the extracellular matrix leads to high ventricular wall stress, which further drives the pathological thinning of the ventricular wall during MI. Injecting biomaterials to thicken the infarct ventricular wall provides mechanical support, thereby inhibiting the continued expansion of the heart. As an injectable biomaterial, alginate hydrogel has achieved exciting results in clinical trials, but further research needs to be conducted to determine whether it can improve cardiac function in addition to providing mechanical support. This study sought to explore these mechanisms in an animal model of MI. Methods: A MI model was established in male C57BL/6J mice by ligation of the proximal left anterior descending (LAD) coronary artery. Intramyocardial injections (hydrogel or saline group) were performed in the proximal wall regions bordering the infarct area (with one 20-µL injection). Four weeks after MI, RNA sequencing revealed that 342 messenger RNAs (mRNAs) from the infarcted hearts were differentially expressed between the saline group and hydrogel group. We subsequently conducted a Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to analyze the RNA sequencing data. In addition, we employed both western blotting and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) techniques to verify a number of genes that were differentially expressed and could potentially affect cardiac function after MI. Subsequently, we confirmed these findings through in vitro experiments. Results: We found that compared with hydrogel treatment group, 250 mRNAs were upregulated and 92 mRNAs were downregulated in saline group (P<0.05). And by exploring the GO and KEGG signaling pathways as well as the protein-protein interaction (PPI) network, we found that administration of alginate hydrogel modulated cardiomyocyte inflammation-associated proteins as well as chemokine-related proteins during the inflammatory response phase after MI. In addition, our analysis at both the protein and RNA level revealed that B2M was effective in improving cardiac function after MI in the hydrogel treatment group, which was consistent in the myocardium oxygen and glucose deprivation (OGD) injury model. Conclusions: We explored the transcriptome changes of infarcted hearts after alginate-hydrogel injection during the inflammatory response period. Our findings suggest that the injectable hydrogel directly alters the inflammatory response and the chemokine-mediated signaling pathway of cardiomyocytes, ultimately improving cardiac function.

4.
ACS Omega ; 9(18): 20196-20205, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38737071

ABSTRACT

Shale reservoirs have diverse mineral types, and analyzing the sensitivity of the mineral composition to shale pores is of great scientific and engineering significance. In this paper, first, X-ray diffraction (XRD) experiments on shale mineral compositions are carried out, and the characteristics of pore structure changes after shale mineral compositions interacted with external fluids (slick water and backflow fluid) are elucidated. Then, the effects of quartz, kaolinite, and pyrite on the pore structure and permeability of shale on the susceptibility to slick water are studied. The results show that (a) quartz and clay minerals are the dominant constituents of each core, with some cores containing minor amounts of plagioclase feldspar and rhodochrosite. (b) The composition of the shale changed significantly following the action of external fluids. The average quartz content of pure shale decreased from 31.62% to 29.1%. The average content of quartz in siliceous shale decreased from 36.53% to 33.5%. The average content of quartz in carbonaceous shale decreased from 9.15% to 8.05%. (c) Factors affecting the sensitivity of shale pore structure and permeability to slick water are mainly quartz, kaolinite, and pyrite. The contents of quartz, kaolinite, and pyrite decreased by an average of 5.1%, 4.6%, and 0.9%, respectively, after slick water action.

5.
Int J Biol Sci ; 20(6): 2092-2110, 2024.
Article in English | MEDLINE | ID: mdl-38617538

ABSTRACT

Development of non-surgical treatment of human abdominal aortic aneurysm (AAA) has clinical significance. Colchicine emerges as an effective therapeutic regimen in cardiovascular diseases. Yet, whether colchicine slows AAA growth remain controversy. Here, we demonstrated that daily intragastric administration of low-dose colchicine blocked AAA formation, prevented vascular smooth muscle cell (SMC) phenotype switching and apoptosis, and vascular inflammation in both peri-aortic CaPO4 injury and subcutaneous angiotensin-II infusion induced experimental AAA mice models. Mechanistically, colchicine increased global mRNA stability by inhibiting the METTL14/YTHDC1-mediated m6A modification, resulting in increased sclerostin (SOST) expression and consequent inactivation of the WNT/ß-catenin signaling pathway in vascular SMCs from mouse AAA lesions and in cultured human aortic SMCs. Moreover, human and mouse AAA lesions all showed increased m6A methylation, decreased SOST expression, and skewed synthetic SMC de-differentiation phenotype, compared to those without AAA. This study uncovers a novel mechanism of colchicine in slowing AAA development by using the METTL14/SOST/WNT/ß-catenin axis to control vascular SMC homeostasis in mouse aortic vessels and in human aortic SMCs. Therefore, use of colchicine may benefit AAA patients in clinical practice.


Subject(s)
Aortic Aneurysm, Abdominal , Muscle, Smooth, Vascular , Humans , Animals , Mice , Aortic Aneurysm, Abdominal/drug therapy , Homeostasis , Aorta , Colchicine/therapeutic use
6.
Heliyon ; 10(4): e25730, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38380050

ABSTRACT

This paper used a multi-period DID model with panel data from 283 Chinese cities between 2006 and 2019 to investigate the emission reduction effects and mechanisms of China's carbon trading scheme. The research revealed that China's Carbon Emissions Trading Scheme not only stimulated businesses to reduce emissions as a market-based environmental regulation policy but also influenced local governments' governance objectives. As a result, the Hawthorne effect inevitably manifested during the experimental period of China's Carbon Emissions Trading Scheme. Further analysis indicated that China's CETS encouraged local authorities to take a more proactive stance towards the balance between environmental preservation and economic growth, aiming to achieve a mutually beneficial outcome. Based on the political stance of local governments, they are likely to simultaneously increase their focus on both economic growth and environmental protection. However, when faced with the conflict between economic advancement and environmental safeguarding, pilot regions prioritized ecological conservation in their practical steps, leading to a modest decline in economic growth. In other words, the government's high-profile announcements may not always manifest in actual deeds. In practice, local authorities tend to allocate more administrative resources to areas highly prioritized by the central government. Furthermore, the extended analysis reveals that China's CETS has resulted in a reduction in social welfare due to a shift in governance priorities influenced by political incentives. Therefore, fine-tuning the performance evaluation mechanism, preventing any bias towards the target preferences of local authorities, and guaranteeing the successful operation of the market mechanism are imperative to achieve truly low-cost and sustainable emissions reductions objectives for CETS.

7.
Data Brief ; 53: 110081, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38328294

ABSTRACT

This paper presents fluid dynamics simulation data associated with two test cases in the related research article [1]. In this article, an efficient bimaterial Riemann problem solver is proposed to accelerate multi-material flow simulations that involve complex thermodynamic equations of state and strong discontinuities across material interfaces. The first test case is a one-dimensional benchmark problem, featuring large density jump (4 orders of magnitude) and drastically different thermodynamics relations across a material interface. The second test case simulates the nucleation of a pear-shaped vapor bubble induced by long-pulsed laser in water. This multiphysics simulation combines laser radiation, phase transition (vaporization), non-spherical bubble expansion, and the emission of acoustic and shock waves. Both test cases are performed using the M2C solver, which solves the three-dimensional Eulerian Navier-Stokes equations, utilizing the accelerated bimaterial Riemann solver. Source codes provided in this paper include the M2C solver and a standalone version of the accelerated Riemann problem solver. These source codes serve as references for researchers seeking to implement the acceleration algorithms introduced in the related research article. Simulation data provided include fluid pressure, velocity, density, laser radiance and bubble dynamics. The input files and the workflow to perform the simulations are also provided. These files, together with the source codes, allow researchers to replicate the simulation results presented in the research article, which can be a starting point for new research in laser-induced cavitation, bubble dynamics, and multiphase flow in general.

8.
Sci Bull (Beijing) ; 69(6): 823-832, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38218634

ABSTRACT

Global warming during the Miocene Climate Optimum (MCO, ∼17-14 million years ago) is associated with massive carbon emissions sourced from the flood basalt volcanism and ocean crustal production. However, the perturbation of tectonic carbon degassing on the interaction between climate change and carbon cycle remains unclear. Here, through time-evolutive phase analysis of new and published high-resolution benthic foraminiferal oxygen (δ18O) and carbon (δ13C) isotope records from the global ocean, we find that variations in the marine carbon cycle lead the climate-cryosphere system (δ13C-lead-δ18O) on 405,000-year eccentricity timescales during the MCO. This is in contrast to the previously reported climate-lead-carbon (δ18O-lead-δ13C) scenario during most of the Oligo-Miocene (∼34-6 million years ago). Further sensitivity analysis and model simulations suggest that the elevated atmospheric CO2 concentrations and the resulting greenhouse effect strengthened the low-latitude hydrological cycle during the MCO, accelerating the response of marine carbon cycle to eccentricity forcing. Tropical climate processes played a more important role in regulating carbon-cycle variations when Earth's climate was in a warm regime, as opposed to the dominant influence of polar ice-sheet dynamics during the Plio-Pleistocene (after ∼6 million years ago).

9.
Mol Biotechnol ; 66(1): 1-10, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37154864

ABSTRACT

Osteoarthritis (OA), a chronic degenerative disease characterized mainly by damage to the articular cartilage, is increasingly relevant to the pathological processes of senescence, apoptosis, autophagy, proliferation, and differentiation of chondrocytes. Clinical strategies for osteoarthritis can only improve symptoms and even along with side effects due to age, sex, disease, and other factors. Therefore, there is an urgent need to identify new ideas and targets for current clinical treatment. The tumor suppressor gene p53, which has been identified as a potential target for tumor therapeutic intervention, is responsible for the direct induction of the pathological processes involved in OA modulation. Consequently, deciphering the characteristics of p53 in chondrocytes is essential for investigating OA pathogenesis due to p53 regulation in an array of signaling pathways. This review highlights the effects of p53 on senescence, apoptosis, and autophagy of chondrocytes and its role in the development of OA. It also elucidates the underlying mechanism of p53 regulation in OA, which may help provide a novel strategies for the clinical treatment of OA.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Osteoarthritis/genetics , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Chondrocytes/metabolism , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Signal Transduction , Apoptosis/genetics , Autophagy
10.
Nat Prod Res ; : 1-8, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38073503

ABSTRACT

A new polysaccharide (AAP) was extracted from Auricularia auricula by water extraction and alcohol precipitation. The antioxidant activity in vitro showed that AAP had a good scavenging effect on ABTS free radicals. Then AAP was purified by DEAE-52 ion exchange chromatography to obtain the purified component pAAP. The structure analysis showed that the molecular weight (Mw) of pAAP was 96.768 kDa, which was composed of rhamnose (Rha), arabinose (Ara), fucose (Fuc), xylose (Xyl), mannose (Man), glucose (Glu) and galactose (Gal), with the ratio of 0.1:0.157:0.33:2.797:2.881:2.988:0.587, and contained α-pyranose configuration and ß-pyranose configuration. Field emission scanning electron microscopy and atomic force microscopy revealed the special conformation of pAAP in the ring and chain shape.

11.
Mikrochim Acta ; 191(1): 50, 2023 12 23.
Article in English | MEDLINE | ID: mdl-38141100

ABSTRACT

A sensitive immunochromatographic assay (ICA) using time-resolved fluorescence microspheres (TRFMs) coupled with an indirect-labeling mode was developed for simultaneously determining 22 kinds of ß-lactams in milk samples. The TRFMs labeled anti-receptor monoclonal antibodies (mAbs) conjugated to penicillin-binding proteins (PBPs) as ternary TRFMs-mAb-PBPs (TMP) nanoscaffolds provide excellent solubility, brightness, and stability. Thanks to the fact that they not only fully expose the binding sites of PBPs, thereby enhancing the biological affinity of PBPs towards the target, but also generated superb fluorescence signals, the versatile TMP manifested unique possibilities as efficient probes for ICA with remarkable enhancement in sensitivity in ß-lactams screening. The results showed that the standard curves of the 22 varying ß-lactams displayed linearity in their respective concentration ranges (R2 > 0.98), with the cutoff values of 1-100 ng/mL. The constructed TMP-ICA was successfully applied to the analysis of real milk, with consistent results compared with liquid chromatography-tandem mass spectrometry (LC-MS), providing an effective method for sensing ß-lactams in food matrices.


Subject(s)
Penicillins , beta-Lactams , Animals , beta-Lactams/analysis , Penicillins/analysis , Penicillin-Binding Proteins , Milk/chemistry , Microspheres , Antibodies/analysis , Immunoassay
12.
mSphere ; 8(6): e0039823, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37982609

ABSTRACT

IMPORTANCE: Currently, the only available commercial vaccines for Orf virus (ORFV) are live attenuated vaccines, which present a potential risk of reversion to virulence. Therefore, understanding the pathogenic mechanisms of different virulent strains of ORFV and host immune responses triggered by these viruses is crucial for developing new vaccines and interventions. In this study, we found that the attenuated strain downregulates the host innate immune response and antiviral activity. In addition, we noted that the wild-type strain can induce the immune response pattern centered on interferon-stimulated genes and interferon regulatory factor gene family. We predicted that STAT1 and STAT2 are the main transcription factors upstream of target gene promoters through gene regulatory networks and exert significant regulatory effects on co-expressed genes. Our study elucidated the complex interaction between ORFV strains and host cell immune responses, providing new insights into vaccine research for ORFV.


Subject(s)
Orf virus , Vaccines , Orf virus/genetics , Transcriptome , Interferons/genetics , Cell Communication
13.
Plant Physiol Biochem ; 204: 108088, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37847975

ABSTRACT

Increasing the carotenoid content of nectarine (Prunus persica var. nucipersica) is of great significance for improving its quality and economic value. A two years study was carried out on 'Shuguang' nectarine to evaluate the effect of calcium chloride (Cl-Ca) and L-aspartic acid nano calcium [Ca (L-asp) - NPs] (nano-Ca) on carotenoid accumulation. The results show that both Cl-Ca and nano-Ca could increase the carotenoid content of nectarine fruit flesh, but the effect of nano-Ca was more significant. Nano-Ca is more easily absorbed by nectarine leaves and fruits, which improves the calmodulin activity of leaves, peel and flesh, and up-regulates the expression of carotenoid synthesis-related genes PpPSY, PpPDS, PpZDS, PpLCY-B, PpCHY-B and PpZEP. Nano-Ca also significantly up-regulated the expression of sucrose synthesis related genes PpSUS1 and PpSUS3 in leaves and sucrose transport related genes PpSUT2 and PpSUT4 in stem phloem, promoting the transport of more photosynthetic products to fruits, providing raw materials for carotenoid synthesis, and increasing the content of total sugars and ascorbic acid (Vc). In addition, nano-Ca can also up-regulate the expression levels of PpMYB10.1 and PpUFGT and promote total anthocyanins accumulation in peel. The results of our study will be useful for clarifying how nano-fertilizer improve the fruit quality of nectarine.


Subject(s)
Anthocyanins , Fruit , Fruit/metabolism , Anthocyanins/metabolism , Calcium/metabolism , Carotenoids/metabolism , Calcium Chloride , Gene Expression Regulation, Plant , Sucrose/metabolism
14.
Sensors (Basel) ; 23(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37896474

ABSTRACT

Detection of the four tobacco shred varieties and the subsequent unbroken tobacco shred rate are the primary tasks in cigarette inspection lines. It is especially critical to identify both single and overlapped tobacco shreds at one time, that is, fast blended tobacco shred detection based on multiple targets. However, it is difficult to classify tiny single tobacco shreds with complex morphological characteristics, not to mention classifying tobacco shreds with 24 types of overlap, posing significant difficulties for machine vision-based blended tobacco shred multi-object detection and unbroken tobacco shred rate calculation tasks. This study focuses on the two challenges of identifying blended tobacco shreds and calculating the unbroken tobacco shred rate. In this paper, a new multi-object detection model is developed for blended tobacco shred images based on an improved YOLOv7-tiny model. YOLOv7-tiny is used as the multi-object detection network's mainframe. A lightweight Resnet19 is used as the model backbone. The original SPPCSPC and coupled detection head are replaced with a new spatial pyramid SPPFCSPC and a decoupled joint detection head, respectively. An algorithm for two-dimensional size calculation of blended tobacco shreds (LWC) is also proposed, which is applied to blended tobacco shred object detection images to obtain independent tobacco shred objects and calculate the unbroken tobacco shred rate. The experimental results showed that the final detection precision, mAP@.5, mAP@.5:.95, and testing time were 0.883, 0.932, 0.795, and 4.12 ms, respectively. The average length and width detection accuracy of the blended tobacco shred samples were -1.7% and 13.2%, respectively. The model achieved high multi-object detection accuracy and 2D size calculation accuracy, which also conformed to the manual inspection process in the field. This study provides a new efficient implementation method for multi-object detection and size calculation of blended tobacco shreds in cigarette quality inspection lines and a new approach for other similar blended image multi-object detection tasks.

15.
Glob Chang Biol ; 29(24): 6856-6866, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37855153

ABSTRACT

Marine primary producers are largely dependent on and shape the Earth's climate, although their relationship with climate varies over space and time. The growth of phytoplankton and associated marine primary productivity in most of the modern global ocean is limited by the supply of nutrients, including the micronutrient iron. The addition of iron via episodic and frequent events drives the biological carbon pump and promotes the sequestration of atmospheric carbon dioxide (CO2 ) into the ocean. However, the dependence between iron and marine primary producers adaptively changes over different geological periods due to the variation in global climate and environment. In this review, we examined the role and importance of iron in modulating marine primary production during some specific geological periods, that is, the Great Oxidation Event (GOE) during the Huronian glaciation, the Snowball Earth Event during the Cryogenian, the glacial-interglacial cycles during the Pleistocene, and the period from the last glacial maximum to the late Holocene. Only the change trend of iron bioavailability and climate in the glacial-interglacial cycles is consistent with the Iron Hypothesis. During the GOE and the Snowball Earth periods, although the bioavailability of iron in the ocean and the climate changed dramatically, the changing trend of many factors contradicted the Iron Hypothesis. By detangling the relationship among marine primary productivity, iron availability and oceanic environments in different geological periods, this review can offer some new insights for evaluating the impact of ocean iron fertilization on removing CO2 from the atmosphere and regulating the climate.


Subject(s)
Iron , Seawater , Iron/analysis , Carbon Dioxide/analysis , Oceans and Seas , Atmosphere , Fertilization
16.
J Chromatogr A ; 1710: 464387, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37757527

ABSTRACT

A comprehensive strategy for effective identification of total constituents in Chinese patent medicine has been advanced applying full scan-preferred parent ions capture-static and active exclusion (FS-PIC-SAE) acquisition coupled with intelligent deep-learning supported mass defect filter (MDF) process, with Naoxintong capsule (NXT) as a case. Online comprehensive two-dimensional liquid chromatography (2DLC) coupled with Q-TOF-MS/MS system was established for obtaining the excellent separation and detection performance of total components, which could exhibit excellent peak capacity with 1052 and orthogonality with 0.69. In addition, a total of 901 unknown compounds could be classified into nine chemical classes rapidly and effectively, based on the intelligent deep-learning algorithm supported MDF model with 96.4% accuracy. Consequently, 276 compounds were successfully identified from NXT, especially including 44 flavonoids, 27 phenolic acids, 25 fatty acids, 17 saponins, 21 phthalocyanines, 20 triterpenes, 10 monoterpenes, 13 diterpenoid ketones, 14 amino acids, and others. It is concluded that the proposed program is an effective and practical strategy enabling the in-depth chemical profiling of complex herbal and biological samples.

17.
Microb Pathog ; 183: 106311, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37625662

ABSTRACT

The community of microorganisms known as gut microbiota that lives in the intestine confers significant health benefits on its host, primarily in the form of immunological homeostasis regulation. Gut microbiota not only can shape immune responses in the gut but also in other organs. This review focus on the gut-lung axis. Aberrant gut microbiota development is associated with greater lung disease susceptibility and respiratory disease induced by a variety of pathogenic bacteria. They are known to cause changes in gut microbiota. Recent research has found that immune cells in the intestine migrate to distant lung to exert anti-infective effects. Moreover, evidence indicates that the gut microbiota and their metabolites influence intestinal immune cells. Therefore, we suspect that intestine-derived immune cells may play a significant role against pulmonary pathogenic infections by receiving instructions from gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Lymphocytes , Homeostasis , Lung
18.
Virus Res ; 334: 199160, 2023 09.
Article in English | MEDLINE | ID: mdl-37402415

ABSTRACT

Contagious ecthyma (CE) is an acute infectious zoonosis caused by orf virus (ORFV) that mainly infects sheep and goats and causes obvious lesions and low market value of livestock, resulting in huge economic losses for farmers. In this study, two strains of ORFV were isolated from Shaanxi Province and Yunnan Province in China, named FX and LX. The two ORFVs were located in the major clades of domestic strains respectively, and exhibited distinct sequence homology. We analyzed the genetic data of core genes (B2L, F1L, VIR, ORF109) and variable genes (GIF, ORF125 and vIL-10) of ORFV to investigate its epidemiological and evolutionary characteristics. The sequences from 2007 to 2018 constituted the majority of the viral population, predominantly concentrated in India and China. Most genes were clustered into SA00-like type and IA82-like type, and the hotspots in East and South Asia were identified in the ORFV transmission trajectories. For these genes, VIR had the highest substitution rate of 4.85 × 10-4, both VIR and vIL-10 suffered the positive selection pressure during ORFV evolution. Many motifs associated with viral survival were distributed among ORFVs. In addition, some possible viral epitopes have been predicted, which still require validation in vivo and in vitro. This work gives more insight into the prevalence and phylogenetic relationships of existing orf viruses and facilitate better vaccine design.


Subject(s)
Ecthyma, Contagious , Orf virus , Animals , Sheep , Orf virus/genetics , Goats , Phylogeny , China/epidemiology , Ecthyma, Contagious/epidemiology
19.
Vet Microbiol ; 284: 109831, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37480660

ABSTRACT

Orf virus (ORFV), also known as infectious pustular virus, leads to an acute contagious zoonotic infectious disease. ORFV can directly contact and infect epithelial cells of skin and mucosa, causing damage to tissue cells. So far, the pathway of ORFV entry into cells is unclear. Therefore, finding the internalization pathway of ORFV will help to elucidate the cellular and molecular mechanisms of ORFV infection and invasion, which in turn will provide a certain reference for the prevention and treatment of ORFV. In the present study, chemical inhibitors were used to analyze the mechanism of ORFV entry into target cells. The results showed that the inhibitor of clathrin-mediated endocytosis could inhibit ORFV entry into cells. However, the inhibitor of caveolae-mediated endocytosis cannot inhibit ORFV entry into cells. In addition, inhibition of macropinocytosis pathway also significantly reduced ORFV internalization. Furthermore, the inhibitors of acidification and dynamin also prevented ORFV entry. However, results demonstrated that inhibitors inhibited ORFV entry but did not inhibit ORFV binding. Notably, extracellular trypsin promoted ORFV entry into cells directly, even when the endocytic pathway was inhibited. In conclusion, ORFV enters into its target cells by clathrin-mediated endocytosis and macropinocytosis, while caveolae-dependent endocytosis has little effects on this process. In addition, the entry into target cells by ORFV required an acid environment and the effect of dynamin. Meanwhile, we emphasize that broad-spectrum antiviral inhibitors and extracellular enzyme inhibitors are likely to be effective strategies for the prevention and treatment of ORFV infection.


Subject(s)
Ecthyma, Contagious , Orf virus , Sheep Diseases , Animals , Sheep , Endocytosis , Pinocytosis , Virus Internalization , Clathrin
20.
Nanomaterials (Basel) ; 13(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446502

ABSTRACT

Plasmon resonances can greatly enhance light-matter interactions of two-dimensional van der Waals materials. However, the quality factor of plasmonic resonances is limited. Here, we demonstrate a plasmonic quasi-bound state in the continuum (quasi-BIC), which is composed of gold nanorod pairs. Through controlling the rotation angle of the nanorods, the quality factor of the plasmonic BIC mode can be tuned. Simulation results show that the plasmonic BIC combines the advantages of high-quality factor from the BIC effect and small mode volume from plasmonic resonance. Experiment results show that the designed plasmonic BIC mode exhibits a quality factor higher than 15 at the wavelength of around 1250 nm. Through integrating the plasmonic bound state structure with monolayer molybdenum ditelluride (MoTe2), the exciton emission of MoTe2 in the PL spectrum split into two exciton-polariton modes, which is attributed to the high Q factor and strong interaction between the BIC mode and excitons of MoTe2.

SELECTION OF CITATIONS
SEARCH DETAIL
...