Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 45(2): 268-281, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37674042

ABSTRACT

Cell senescence has been implicated in the pathology of Parkinson's disease (PD). Both abnormal α-synuclein aggregation and iron deposition are suggested to be the triggers, facilitators, and aggravators during the development of PD. In this study, we investigated the involvement of α-synuclein and iron in the process of cell senescence in a mouse model of PD. In order to overexpress α-syn-A53T in the substantia nigra pars compacta (SNpc), human α-syn-A53T was microinjected into both sides of the SNpc in mice. We found that overexpression of α-syn-A53T for one week induced significant pro-inflammatory senescence-associated secretory phenotype (SASP), increased cell senescence-related proteins (ß-gal, p16, p21, H2A.X and γ-H2A.X), mitochondrial dysfunction accompanied by dysregulation of iron-related proteins (L-ferritin, H-ferritin, DMT1, IRP1 and IRP2) in the SNpc. In contrast, significant loss of nigral dopaminergic neurons and motor dysfunction were only observed after overexpression of α-syn-A53T for 4 weeks. In PC12 cells stably overexpressing α-syn-A53T, iron overload (ferric ammonium citrate, FAC, 100 µM) not only increased the level of reactive oxygen species (ROS), p16 and p21, but also exacerbated the processes of oxidative stress and cell senescence signalling induced by α-syn-A53T overexpression. Interestingly, reducing the iron level with deferoxamine (DFO) or knockdown of transferrin receptor 1 (TfR1) significantly improved both the phenotypes and dysregulated proteins of cell senescence induced by α-syn-A53T overexpression. All these evidence highlights the toxic interaction between iron and α-synuclein inducing cell senescence, which precedes nigral dopaminergic neuronal loss in PD. Further investigation on cell senescence may yield new therapeutic agents for the prevention or treatment of PD.


Subject(s)
Parkinson Disease , Rats , Mice , Animals , Humans , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Dopaminergic Neurons/metabolism , Iron/metabolism , Substantia Nigra/metabolism , Substantia Nigra/pathology , Dopamine/metabolism , Cellular Senescence , Disease Models, Animal
2.
Acta Pharmacol Sin ; 45(1): 52-65, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37674043

ABSTRACT

Gut microbiota disturbance and systemic inflammation have been implicated in the degeneration of dopaminergic neurons in Parkinson's disease (PD). How the alteration of gut microbiota results in neuropathological events in PD remains elusive. In this study, we explored whether and how environmental insults caused early neuropathological events in the substantia nigra (SN) of a PD mouse model. Aged (12-month-old) mice were orally administered rotenone (6.25 mg·kg-1·d-1) 5 days per week for 2 months. We demonstrated that oral administration of rotenone to ageing mice was sufficient to establish a PD mouse model and that microglial activation and iron deposition selectively appeared in the SN of the mice prior to loss of motor coordination and dopaminergic neurons, and these events could be fully blocked by microglial elimination with a PLX5622-formulated diet. 16 S rDNA sequencing analysis showed that the gut microbiota in rotenone-treated mice was altered, and mice receiving faecal microbial transplantation (FMT) from ageing mice treated with rotenone for 2 months exhibited the same pathology in the SN. We demonstrated that C-X-C motif chemokine ligand-1 (CXCL1) was an essential molecule, as intravenous injection of CXCL1 mimicked almost all the pathology in serum and SN induced by oral rotenone and FMT. Using metabolomics and transcriptomics analyses, we identified the PPAR pathway as a key pathway involved in rotenone-induced neuronal damage. Inhibition of the PPARγ pathway was consistent in the above models, whereas its activation by linoleic acid (60 mg·kg-1·d-1, i.g. for 1 week) could block these pathological events in mice intravenously injected with CXCL1. Altogether, these results reveal that the altered gut microbiota resulted in neuroinflammation and iron deposition occurring early in the SN of ageing mice with oral administration of rotenone, much earlier than motor symptoms and dopaminergic neuron loss. We found that CXCL1 plays a crucial role in this process, possibly via PPARγ signalling inhibition. This study may pave the way for understanding the "brain-gut-microbiota" molecular regulatory networks in PD pathogenesis. The aged C57BL/6 male mice with rotenone intragastric administration showed altered gut microbiota, which caused systemic inflammation, PPARγ signalling inhibition and neuroinflammation, brain iron deposition and ferroptosis, and eventually dopaminergic neurodegeneration in PD.


Subject(s)
Gastrointestinal Microbiome , Parkinson Disease , Mice , Animals , Male , Rotenone/toxicity , Neuroinflammatory Diseases , PPAR gamma , Mice, Inbred C57BL , Parkinson Disease/pathology , Substantia Nigra/pathology , Dopaminergic Neurons/pathology , Inflammation/pathology , Iron , Disease Models, Animal
3.
Cell Death Discov ; 9(1): 388, 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37865662

ABSTRACT

Olfactory dysfunction represents a prodromal stage in Parkinson's disease (PD). However, the mechanisms underlying hyposmia are not specified yet. In this study, we first observed an early olfactory dysfunction in mice with intragastric rotenone administration, consistent with dopaminergic neurons loss and α-synuclein pathology in the olfactory bulb. However, a much severer olfactory dysfunction was observed without severer pathology in olfactory bulb when the loss of dopaminergic neurons in the substantia nigra occurred. Then, we established the mice models by intrastriatal α-synuclein preformed fibrils injection and demonstrated the performance in the olfactory discrimination test was correlated to the loss of dopaminergic neurons in the substantia nigra, without any changes in the olfactory bulb analyzed by RNA-sequence. In mice with intranasal ferric ammonium citrate administration, we observed olfactory dysfunction when dopaminergic neurodegeneration in substantia nigra occurred and was restored when dopaminergic neurons were rescued. Finally we demonstrated that chemogenetic inhibition of dopaminergic neurons in the substantia nigra was sufficient to cause hyposmia and motor incoordination. Taken together, this study shows a direct relationship between nigral dopaminergic neurodegeneration and olfactory dysfunction in PD models and put forward the understandings that olfactory dysfunction represents the early stage of neurodegeneration in PD progression.

4.
Free Radic Biol Med ; 208: 445-457, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37683766

ABSTRACT

Autophagy is a major clearance pathway for misfolded α-synuclein which promotes ferroptosis through NCOA4-mediated ferritin degradation. The regulation of these two processes to achieve improved neuroprotection in Parkinson's disease (PD) must be elucidated. Transcription factor EB (TFEB) is a master regulator of both autophagy and lysosome biogenesis, and lysosomes are important cellular iron storage organelles; however, the role of TFEB in ferroptosis and iron metabolism remains unclear. In this study, TFEB overexpression promoted the clearance of misfolded α-synuclein and prevented ferroptosis and iron overload. TFEB overexpression up-regulated transferrin receptor 1 (TfR1) synthesis and increased the localization of TfR1 in the lysosome, facilitating lysosomal iron import and transient lysosomal iron storage. TFEB overexpression increased the levels of cellular iron-safe storage proteins (both ferritin light and heavy chains). These functions in iron metabolism maintain the cellular labile iron at a low level and electrical activity, even under iron overload conditions. Notably, lower levels of cellular labile iron and the upregulation of ferritin light and heavy chains were reversed after TfR1 knockdown in cells overexpressing TFEB, indicating that TFEB regulates cellular labile iron and suppresses ferroptosis in a TfR1 dependent manner. Taken together, this evidence of the regulation of iron metabolism enriches our understanding of the function of TFEB. In addition, TFEB overexpression protects against ferroptosis and iron overload and provides a new direction and perspective for autophagy regulation in PD.


Subject(s)
Ferroptosis , Iron Overload , Parkinson Disease , alpha-Synuclein/metabolism , Autophagy/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Ferritins/metabolism , Ferroptosis/genetics , Iron/metabolism , Iron Overload/metabolism , Lysosomes/metabolism , Parkinson Disease/metabolism , Receptors, Transferrin/genetics , Receptors, Transferrin/metabolism , Animals , Mice , Rats , PC12 Cells/metabolism
6.
Biomolecules ; 11(9)2021 08 29.
Article in English | MEDLINE | ID: mdl-34572500

ABSTRACT

As a pathological biomarker of Parkinson's disease, α-synuclein is thought to be a prion-like protein, but evidence for the transmission of α-synuclein from blood to the brain is unclear. The goals of this study were to determine whether blood-derived α-synuclein could enter the brains of mice and whether α-synuclein in the brain could be cleared by parabiosis. Heterochronic parabiosis was performed on SNCAA53T transgenic mice (A53T mice) and wildtype mice. The levels of human α-synuclein in the blood and substantia nigra of wildtype mice were significantly increased after 4-month parabiosis with A53T mice. Moreover, the expression of α-synuclein filament, but not of total α-synuclein, was significantly increased in the substantia nigra of wildtype mice that were paired with A53T mice. However, the levels of human α-synuclein displayed no significant change in the serum, blood, or substantia nigra of A53T mice. These results provide direct evidence that pathological α-synuclein can be transmitted from blood to the brain in the heterochronic parabiosis system; however, it appears to be difficult to clear it from the brain in a short period of time.


Subject(s)
Protein Aggregates , Substantia Nigra/metabolism , alpha-Synuclein/blood , Animals , Feasibility Studies , Mice, Transgenic , Parabiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...