Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
Langmuir ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747679

ABSTRACT

Gold-based nanostructures with well-defined morphologies and hollow interiors have significant potential as a versatile platform for various plasmonic applications including biomedical diagnostics and sensing. In this study, we report the synthesis of Au@Ag core-shell nanocrystals with perfect octahedral shapes and tunable edge lengths via seeded growth. These nanocrystals were then oxidatively carved into yolk-shell nanocages with a retained octahedral morphology. The increase in octahedral edge length and volume of the interior hollow cavity synergistically leads to a red-shift of the LSPR peak. As a result, the optimized Au@AuAg yolk-shell octahedral nanocages showed a remarkable temperature increase of 23 °C upon 15 min irradiation of an 808 nm laser at a power density of 1 W cm-2. This study provides a feasible strategy for creating octahedral AuAg nanostructures with tunable sizes and hollow interiors and validates their promising use in NIR photothermal conversion.

2.
Photochem Photobiol Sci ; 23(4): 711-718, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430370

ABSTRACT

BACKGROUND: Previous studies have shown that visible light (VL), especially blue light (BL), could cause significant skin damage. With the emergence of VL protection products, a harmonization of light protection methods has been proposed, but it has not been widely applied in the Chinese population. OBJECTIVE: Based on this framework, we propose an accurate and simplified method to evaluate the efficacy of BL photoprotection for the Chinese population. METHODS: All subjects (n = 30) were irradiated daily using a blue LED light for four consecutive days. Each irradiation dose was 3/4 MPPD (minimum persistent pigmentation darkening). The skin pigmentation parameters, including L*, M, and ITA°, were recorded. We proposed the blue light protection factor (BPF) metric based on the skin pigmentation parameters to evaluate the anti-blue light efficacies of different products. RESULTS: We found that the level of pigmentation rose progressively and linearly as blue light exposure increased. We proposed a metric, BPF, to reflect the anti-blue light efficacy of products based on the linear changes in skin pigment characteristics following daily BL exposure. Moreover, we discovered that the BPF metric could clearly distinguish the anti-blue light efficacies between two products and the control group, suggesting that BPF is an efficient and simple-to-use metric for anti-blue light evaluation. CONCLUSION: Our study proposed an accurate and simplified method with an easy-to-use metric, BPF, to accurately characterize the anti-blue light efficacies of cosmetic products, providing support for further development of anti-blue light cosmetics.


Subject(s)
Blue Light , Skin Pigmentation , Humans , Light , China , Skin/radiation effects , Ultraviolet Rays
3.
Article in English | MEDLINE | ID: mdl-38369780

ABSTRACT

Hepatic stellate cells (HSCs) are critical regulator contributing to the onset and progression of liver fibrosis. Chronic liver injury triggers HSCs to undergo vast changes and trans-differentiation into a myofibroblast HSCs, the mechanism remains to be elucidated. This study investigated that the involvement of hydroxymethylase TET1 (ten-eleven translocation 1) in HSC activation and liver fibrosis. It is revealed that TET1 levels were downregulated in the livers in mouse models of liver fibrosis and patients with cirrhosis, as well as activated HSCs in comparison to quiescent HSCs. In vitro data showed that the inhibition of TET1 promoted the activation HSC, whereas TET1 overexpression inhibited HSC activation. Moreover, TET1 could regulate KLF2 (Kruppel-like transcription factors) transcription by promoting hydroxymethylation of its promoter, which in turn suppressed the activation of HSCs. In vivo, it is confirmed that liver fibrosis was aggravated in Tet1 knockout mice after CCl4 injection, accompanied by excessive activation of primary stellate cells, in contrast to wild-type mice. In conclusion, we suggested that TET1 plays a significant role in HSC activation and liver fibrosis, which provides a promising target for anti-fibrotic therapies.

4.
Arthritis Res Ther ; 25(1): 194, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798786

ABSTRACT

OBJECTIVES: Ankylosing spondylitis (AS) is a chronic inflammatory disease that mainly affects the sacroiliac joint and spine. However, the real mechanisms of immune cells acting on syndesmophyte formation in AS are not well identified. We aimed to find the key AS-associated cytokine and assess its pathogenic role in AS. METHODS: A protein array with 1000 cytokines was performed in five AS patients with the first diagnosis and five age- and gender-matched healthy controls to discover the differentially expressed cytokines. The candidate differentially expressed cytokines were further quantified by multiplex protein quantitation (3 AS-associated cytokines and 3 PDGF-pathway cytokines) and ELISA (PDGFB) in independent samples (a total of 140 AS patients vs 140 healthy controls). The effects of PDGFB, the candidate cytokine, were examined by using adipose-derived stem cells (ADSCs) and human fetal osteoblast cell line (hFOB1.19) as in vitro mesenchymal cell and preosteoblast models, respectively. Furthermore, whole-transcriptome sequencing and enrichment of phosphorylated peptides were performed by using cell models to explore the underlying mechanisms of PDGFB. The xCELLigence system was applied to examine the proliferation, chemotaxis, and migration abilities of PDGFB-stimulated or PDGFB-unstimulated cells. RESULTS: The PDGF pathway was observed to have abnormal expression in the protein array, and PDGFB expression was further found to be up-regulated in 140 Chinese AS patients. Importantly, PDGFB expression was significantly correlated with BASFI (Pearson coefficient/p value = 0.62/6.70E - 8) and with the variance of the mSASSS score (mSASSS 2 years - baseline, Pearson coefficient/p value = 0.76/8.75E - 10). In AS patients, preosteoclasts secreted more PDGFB than the healthy controls (p value = 1.16E - 2), which could promote ADSCs osteogenesis and enhance collagen synthesis (COLI and COLIII) of osteoblasts (hFOB 1.19). In addition, PDGFB promoted the proliferation, chemotaxis, and migration of ADSCs. Mechanismly, in ADSCs, PDGFB stimulated ERK phosphorylation by upregulating GRB2 expression and then increased the expression of RUNX2 to promote osteoblastogenesis of ADSCs. CONCLUSION: PDGFB stimulates the GRB2/ERK/RUNX2 pathway in ADSCs, promotes osteoblastogenesis of ADSCs, and enhances the extracellular matrix of osteoblasts, which may contribute to pathological bone formation in AS.


Subject(s)
Proto-Oncogene Proteins c-sis , Spondylitis, Ankylosing , Humans , Core Binding Factor Alpha 1 Subunit/metabolism , Cytokines/metabolism , GRB2 Adaptor Protein/metabolism , Osteogenesis/physiology , Proto-Oncogene Proteins c-sis/genetics , Proto-Oncogene Proteins c-sis/metabolism , Spine/metabolism , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/metabolism
5.
J Dermatol Sci ; 111(3): 109-119, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37661474

ABSTRACT

BACKGROUND: Systemic Sclerosis (SSc) is an autoimmune disease characterized by vascular and immune system dysfunction, along with tissue fibrosis. Our previous study found GRB2 was downregulated by salvianolic acid B, a small molecule drug that attenuated skin fibrosis of SSc. OBJECTIVES: Here we aim to investigate the role of GRB2 in SSc. METHODS: The microarray data of SSc skin biopsies in Caucasians were obtained from the Gene Expression Omnibus (GEO) database. The expression of GRB2 was further detected in Chinese SSc and healthy controls. Bleomycin (BLM)-induced skin fibrosis mice were used to explore how GRB2 downregulation affected fibrosis. The apoptosis of EA.hy926 endothelial cells was induced by H2O2 and apoptosis ratio was measured by flow cytometric. Transcriptome and phosphoproteomic analyses were performed to explore the regulated pathway. RESULTS: The expression of GRB2 was significantly enhanced in SSc patient skin, 1.51-fold in Caucasians and 1.40-fold in Chinese. Double immunofluorescence staining showed the endothelial cells of SSc patient's skin highly expressed GRB2. The in vivo study revealed that GRB2 knockdown alleviated skin fibrosis and apoptosis of endothelial cells in BLM mouse skin. The in vitro study showed that GRB2 downregulation inhibited the apoptosis of EA.hy926 and protected them from H2O2-induced hyperpermeability. Moreover, transcriptome and phosphoproteomic analysis suggested the focal adhesion pathway was enriched in GRB2 siRNA transfected endothelial cells. CONCLUSIONS: Our results demonstrated GRB2 highly expressed in endothelial cells of SSc skin, and inhibiting GRB2 could effectively attenuate BLM-induced skin fibrosis and endothelial cell apoptosis. GRB2 is expected to be a new therapeutic target for SSc.


Subject(s)
Endothelial Cells , Scleroderma, Systemic , Animals , Humans , Mice , Apoptosis , Bleomycin/toxicity , Disease Models, Animal , Endothelial Cells/metabolism , Fibroblasts/metabolism , Fibrosis , GRB2 Adaptor Protein/metabolism , GRB2 Adaptor Protein/pharmacology , Hydrogen Peroxide/metabolism , Skin/pathology
6.
Skin Res Technol ; 29(9): e13454, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37753695

ABSTRACT

BACKGROUND: Evidence suggests that sebum content is important in skin disorders such as acne. However, sebum levels change depending on the external environment, and quantifying skin sebum levels is challenging. Here, we propose an optimal method for quantifying the facial sebum level. MATERIALS AND METHODS: Four hundred and sixty participants (160 males and 300 females) aged 20-40 were enrolled in this study. A Sebumeter SM 810 was used to measure the sebum level at five facial locations: the forehead, the chin, the left cheek, the right cheek, and the nose. The participants were divided into two groups; one group underwent a one-time measurement (n = 390, male: female = 120: 270), and the other underwent three consecutive measurements (n = 70, male: female = 40: 30). The casual sebum level (CSL) was measured in all patients after a 30-min acclimatization; subsequently, the sebum removal process was conducted, followed by a resting period of 1 h to determine the sebum excretion rate (SER). Spearman's correlation analysis and the Wilcoxon signed-rank test were used to compare the sebum level consistency and differences between the groups. RESULTS: Although three consecutive measurements better reflected the sebum content, the one-time measurement also represented the relative sebum level. One hour after sebum removal, the sebum level recovered to 70%-90%; thus, this method was applicable for use in SER quantification. Of the five testing points, the sebum content was highest in the nose and lowest in the cheeks (both left and right). In addition, the cheeks were the most stable sites in terms of testing points, testing times, and CSL/SER values. A one-time measurement of the CSL could represent the SER 1 h after the sebum removal. In our cohort, the sebum level of males with oily skin was decreased at age 32-35, and that of males with non-oily skin increased at 28-35. The opposite trend was observed in female participants. CONCLUSION: Sebum measurement methods were assessed, including testing times, indices (interval of time) and sites in a conditioned external environment. A one-time measurement of the CSL 1 h after sebum removal was sufficient to determine the sebum level and SER, and the cheeks are recommended as the testing site. Sex and skin type differences were observed in sebum level changes with age.


Subject(s)
Face , Sebum , Humans , Female , Male , Adult , Cheek , Nose , Forehead
7.
Article in English | MEDLINE | ID: mdl-37665747

ABSTRACT

OBJECTIVES: Innate immunity significantly contributes to systemic sclerosis (SSc) pathogenesis. TLR8 is an important innate immune mediator that is implicated in autoimmunity and fibrosis. However, the expression, mechanism of action, and pathogenic role of TLR8 in SSc remain unclear. The aim of this study was to explore the roles and underlying mechanisms of TLR8 in SSc. METHODS: The expression of TLR8 was analyzed based on a public dataset and then verified in skin tissues and skin fibroblasts of SSc patients. The role of TLR8 in inflammation and fibrosis was investigated using a TLR8-overexpression vector, activator (VTX-2337), inhibitor (cu-cpt-8m), and TLR8 siRNA in skin fibroblasts. The pathogenic role of TLR8 in skin inflammation and fibrosis was further validated in a bleomycin (BLM)-induced mouse skin inflammation and fibrosis model. RESULTS: TLR8 levels were significantly elevated in SSc skin tissues and myofibroblasts, along with significant activation of the TLR8 pathway. In vitro studies showed that overexpression or activation of TLR8 by a recombinant plasmid or VTX-2337 upregulated IL-6, IL-1ß, COL I, COL III, and α-SMA in skin fibroblasts. Consistently, both TLR8-siRNA and cu-cpt-8m reversed the phenotypes observed in TLR8-activating fibroblasts. Mechanistically, TLR8 induces skin fibrosis and inflammation in a manner dependent on the MAPK, NF-κB, and SMAD2/3 pathways. Subcutaneous injection of cu-cpt-8m significantly alleviated BLM-induced skin inflammation and fibrosis in vivo. CONCLUSION: TLR8 might be a promising therapeutic target to improve the treatment strategy for SSc skin inflammation and fibrosis.

8.
J Dermatol Sci ; 111(2): 52-59, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37438186

ABSTRACT

BACKGROUND: Studies indicate that blue light (BL) irradiation can damage human skins, but the impact of BL irradiation on skin aging is unknown. OBJECTIVES: This study aimed to give an insight to phenotypic characteristics and molecular mechanism of blue light-induced skin aging, and thus provide a theoretical basis for the precise protection of photodermatosis. METHODS: The effect of BL on skin photoaging in mice was evaluated by non-invasive measurement equipment and histopathology analysis. The effect of BL irradiation on the proliferation of HFF-1 cells was detected by the Real-Time Cell Analyzer. The expression and protein levels of genes associated with skin aging were examined. RESULTS: Our studies indicated photoaging caused by BL irradiation, including collagen disorder and increased MMP1. BL irradiation also inhibited cell proliferation and collagen expression in human skin fibroblasts by inhibiting TGF-ß signaling pathway, based on in vitro experiments. Importantly, BL irradiation promoted the degradation of collagen by increasing MMP1 activated by the JNK/c-Jun and EGFR pathways. Moreover, ROS levels were significantly increased after BL irradiation in human skin fibroblasts. Yet, the transcriptional change in human skin fibroblasts caused by BL irradiation was unable to be completely restored by ROS scavenger. CONCLUSION: BL irradiation down-regulated expression of type I collagen genes and up-regulated MMP1 expression to inhibit the proliferation of human skin fibroblasts. Multiple key pathways including TGF-ß, JNK, and EGFR signaling were involved in BL-induced skin aging. Our results provide theoretical bases for the protection of photoaging caused by BL irradiation.


Subject(s)
Skin Aging , Skin Diseases , Humans , Animals , Mice , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Transforming Growth Factor beta/metabolism , Reactive Oxygen Species/metabolism , Skin/pathology , Collagen/metabolism , Skin Diseases/pathology , Fibroblasts/metabolism , ErbB Receptors/metabolism , Ultraviolet Rays/adverse effects
9.
Molecules ; 28(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37175080

ABSTRACT

The formic acid oxidation reaction (FAOR) represents an important class of small organic molecule oxidation and is central to the practical application of fuel cells. In this study, we report the fabrication of Ir(IV)-doped PdAg alloy nanodendrites with sub-5 nm branches via stepwise synthesis in which the precursors of Pd and Ag were co-reduced, followed by the addition of IrCl3 to conduct an in situ galvanic replacement reaction. When serving as the electrocatalyst for the FAOR in an acidic medium, Ir(IV) doping unambiguously enhanced the activity of PdAg alloy nanodendrites and improved the reaction kinetics and long-term stability. In particular, the carbon-supported PdAgIr nanodendrites exhibited a prominent mass activity with a value of 1.09 A mgPd-1, which is almost 2.0 times and 2.7 times that of their PdAg and Pd counterparts, and far superior to that of commercial Pt/C. As confirmed by the means of the DFT simulations, this improved electrocatalytic performance stems from the reduced overall barrier in the oxidation of formic acid into CO2 during the FAOR and successful d-band tuning, together with the stabilization of Pd atoms. The current study opens a new avenue for engineering Pd-based trimetallic nanocrystals with versatile control over the morphology and composition, shedding light on the design of advanced fuel cell electrocatalysts.

10.
Int J Biol Sci ; 19(8): 2394-2408, 2023.
Article in English | MEDLINE | ID: mdl-37215989

ABSTRACT

Skin fibrosis is a common pathological manifestation in systemic sclerosis (SSc), keloid, and localized scleroderma (LS) characterized by fibroblast activation and excessive extracellular matrix (ECM) deposition. However, few effective drugs are available to treat skin fibrosis due to its unclear mechanisms. In our study, we reanalyzed skin RNA-sequencing data of Caucasian, African, and Hispanic SSc patients from the Gene Expression Omnibus (GEO) database. We found that the focal adhesion pathway was up-regulated and Zyxin appeared to be the primary focal adhesion protein involved in skin fibrosis, and we further verified its expression in Chinese skin tissues of several fibrotic diseases, including SSc, keloid, and LS. Moreover, we found Zyxin inhibition could significantly alleviate skin fibrosis using Zyxin knock-down and knock-out mice, nude mouse model and skin explants of human keloid. Double immunofluorescence staining showed that Zyxin was highly expressed in fibroblasts. Further analysis revealed pro-fibrotic gene expression and collagen production increased in Zyxin over-expressed fibroblasts, and decreased in Zyxin interfered SSc fibroblasts. In addition, transcriptome and cell culture analyses revealed Zyxin inhibition could effectively attenuate skin fibrosis by regulating the FAK/PI3K/AKT and TGF-ß signaling pathways via integrins. These results suggest Zyxin appears a potential new therapeutic target for skin fibrosis.


Subject(s)
Keloid , Scleroderma, Systemic , Zyxin , Animals , Humans , Mice , Fibroblasts/metabolism , Fibrosis , Integrins/metabolism , Keloid/metabolism , Keloid/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Scleroderma, Systemic/genetics , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/metabolism , Signal Transduction/genetics , Skin/metabolism , Transforming Growth Factor beta/metabolism , Zyxin/genetics , Zyxin/metabolism
12.
Rheumatology (Oxford) ; 62(6): 2320-2324, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36637178

ABSTRACT

OBJECTIVES: Anti-melanoma differentiation-associated gene 5 antibody positive dermatomyositis (MDA5+DM), is susceptible to development of rapidly progressive interstitial lung disease (RPILD), which has been predominantly reported in East Asia. A Japanese genome-wide study has identified a WDFY4 variant rs7919656 linkage. We sought to evaluate this genetic marker and exploit its possible clinical relevance in Chinese MDA5+DM. METHODS: We genotyped and compared the minor allele A frequency of WDFY4 rs7919656 in patients with MDA5+DM (n = 254) including 190 clinically amyopathic dermatomyositis (CADM), MDA5-DM (n = 53), anti-synthetases syndrome (ASyS, n = 72) and healthy controls (n = 192). Association of the WDFY4 variant with clinical phenotype was evaluated using logistic regression. RESULTS: Although the minor allele A frequencies of WDFY4 rs7919656 in MDA5+DM and CADM were comparable to that in healthy controls, we observed a significant correlation between the WDFY4 variant (GA+AA genotype) and the incidence of RPILD in MDA5+DM (OR: 2.11; 95% CI: 1.21, 3.69; P = 0.007). Moreover, this variant was an independent risk factor for RPILD in multivariate analysis (OR: 4.98; 95% CI: 1.59, 17.19; P = 0.008), along with other well-recognized risk factors, i.e. forced vital capacity % predicted, diffusing capacity for carbon monoxide % predicted, serum ferritin and prednisolone exposure. In addition, this variant was associated with higher expression of WDFY4 in PBMCs of MDA5+DM, especially those with RPILD. WDFY4 overexpression was also observed in lung biopsy of MDA5+DM-RPILD bearing the variant genotype. CONCLUSION: We found that the WDFY4 variant was associated with an increased risk of RPILD, not with disease susceptibility in Chinese MDA5+DM.


Subject(s)
Dermatomyositis , Lung Diseases, Interstitial , Humans , Autoantibodies , Dermatomyositis/complications , Dermatomyositis/genetics , Disease Progression , East Asian People , Genome-Wide Association Study , Interferon-Induced Helicase, IFIH1/genetics , Intracellular Signaling Peptides and Proteins , Lung Diseases, Interstitial/etiology , Retrospective Studies
13.
J Clin Transl Hepatol ; 11(2): 261-272, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-36643045

ABSTRACT

Background and Aims: RAS protein activator like 2 (RASAL2) is a newly discovered metabolic regulator involved in energy homeostasis and adipogenesis. However, whether RASAL2 is involved in hepatic lipid metabolism remains undetermined. This study explored the function of RASAL2 and elucidated its potential mechanisms in nonalcoholic fatty liver disease (NAFLD). Methods: NAFLD models were established either by feeding mice a high-fat diet or by incubation of hepatocytes with 1 mM free fatty acids (oleic acid:palmitic acid=2:1). Pathological changes were observed by hematoxylin and eosin staining. Lipid accumulation was assessed by Oil Red O staining, BODIPY493/503 staining, and triglyceride quantification. The in vivo secretion rate of very low-density lipoprotein was determined by intravenous injection of tyloxapol. Gene regulation was analyzed by chromatin immunoprecipitation assays and hydroxymethylated DNA immunoprecipitation combined with real-time polymerase chain reaction. Results: RASAL2 deficiency ameliorated hepatic steatosis both in vivo and in vitro. Mechanistically, RASAL2 deficiency upregulated hepatic TET1 expression by activating the AKT signaling pathway and thereby promoted MTTP expression by DNA hydroxymethylation, leading to increased production and secretion of very low-density lipoprotein, which is the major carrier of triglycerides exported from the liver to distal tissues. Conclusions: Our study reports the first evidence that RASAL2 deficiency ameliorates hepatic steatosis by regulating lipid metabolism through the AKT/TET1/MTTP axis. These findings will help understand the pathogenesis of NAFLD and highlight the potency of RASAL2 as a new molecular target for NAFLD.

15.
Mol Clin Oncol ; 17(4): 149, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36157320

ABSTRACT

It has been reported that >90% of women with cervical cancer are human papillomavirus (HPV)-positive, with HPV16 and 18 being the most 'highest-risk' HPV genotypes. However, in numerous women, HPV infection will not progress to cervical cancer. Accordingly, more appropriate screening markers need to be explored. In the present study, genome-wide DNA methylomic differences between cervical cancer tissues with HPV-16 or HPV-18 infection and normal cervical tissues were detected by using an Illumina Human Methylation 850 K BeadChip. The Gene Ontology functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted in order to define the nearest neighbouring genes of differentiated methylation sites. Moreover, differentiated methylation sites were verified using pyrosequencing. KEGG analyses suggested that the focal adhesion pathway and pathways in cancer were highly enriched. Bioinformatics and statistical analysis indicated that the nine CpG loci had the most significant differences amongst the genes involved in these pathways. Among these, six CpG sites in the CHRM2, LAMA4, COL11A1, FGF10, IGF1 and TEK genes were highly associated with HPV-16-positive cervical cancer, as validated using pyrophosphate sequencing. Additionally, 10 significantly different CpG sites of the HPV-18-positive group were selected and verified in The Cancer Genome Atlas, indicating their possible diagnostic roles in cervical cancer development and determination. In addition, eight hypermethylated CpG island sites that were associated with HPV-16-positive cervical cancer tissues and 10 hypermethylated CpG island sites that were associated with HPV-18-positive cervical cancer tissues were identified, highlighting their potential roles in screening and evaluating targeted therapy efficacy and prognosis. The main focus of the present study was to identify the genetic variability in HPV-16- and HPV-18-positive samples and to elucidate possible methylation biomarkers in HPV-positive women with a risk of developing cervical cancer.

16.
Skin Pharmacol Physiol ; 35(6): 305-318, 2022.
Article in English | MEDLINE | ID: mdl-36044837

ABSTRACT

BACKGROUND: The growing use of electronic devices and other artificial light sources in recent decades has changed the pattern of exposure to blue light (400-500 nm). Although some progress has been made in the study of the biological effects of blue light on the skin, many questions in this field remain unexplored. The aim of this article was to review the currently available evidence on the deleterious effects of blue light on the skin as well as the methods and strategies designed to protect from the detrimental effects of blue light. The PubMed and ProQuest databases were searched in January 2022. Search results were supplemented by articles considered relevant by the authors. SUMMARY: The results of in vitro, in vivo, and clinical studies show that blue light produces direct and indirect effects on the skin. The most significant direct effects are the excessive generation of reactive oxygen and nitrogen species, and hyperpigmentation. Reactive oxygen and nitrogen species cause DNA damage and modulate the immune response. Indirect effects of blue light include disruption of the central circadian rhythm regulation via melatonin signaling and local circadian rhythm regulation via direct effects on skin cells. Antioxidants and sunscreens containing titanium dioxide, iron oxides, and zinc oxide can be used to protect against the detrimental effects of blue light as part of a strategy that combines daytime protection and night-time repair. KEY MESSAGES: Blue light produces a wide variety of direct and indirect effects on the skin. As exposure to blue light from artificial sources is likely to continue to increase, this area warrants further investigation.


Subject(s)
Light , Melatonin , Circadian Rhythm/physiology , Oxygen , Nitrogen
17.
ACS Appl Mater Interfaces ; 14(35): 40014-40020, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36000945

ABSTRACT

Triboelectric sensors provide an effective approach to solving the power supply problem for distributed sensing nodes. However, the poor stability and repeatability of the output signal limit its further development due to structural deficiencies and intrinsic working mechanisms. This work proposes a contact-separation mode laminated triboelectric nanogenerator (L-TENG) by introducing multifunctional layers to regulate triboelectric charges. A liquid metal Galinstan and PDMS mixture with a dense microstructure array is fabricated as the dielectric layer. Liquid squalene is filled in the space between two triboelectric layers to eliminate the influence of moisture in the air. A Cu shield film is sputtered on the surface to screen the electrostatic interference and enhance the repeatability. Owing to the effective design, the sensitivity of the L-TENG could reach 6.66 kPa-1 in the low-pressure region and 0.79 kPa-1 in the high-pressure region with a wide detection range from 8 Pa to 71.85 kPa. In addition, it also illustrates fast response and recovery times of 30 and 10 ms, respectively, and great stability in a humid environment. Finally, the L-TENG has been successfully demonstrated to monitor various physical activities in humans such as swallowing, finger bending, and so forth. This work has important scientific significance in opening up a new strategy for the structure optimization and performance improvement of triboelectric sensors.

18.
Cell Death Dis ; 13(8): 715, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35977935

ABSTRACT

Gastric cancer (GC) is a malignancy with poor prognosis. NDUFA4 is reported to correlate with the progression of GC. However, its underlying mechanism in GC is unknown. Our study was to reveal the pathogenic mechanism of NDUFA4 in GC. NDUFA4 expression was explored in single-cell and bulk RNA-seq data as well as GC tissue microarray. Mitochondrial respiration and glycolysis were estimated by oxygen consumption rate and extracellular acidification rate, respectively. The interaction between NDUFA4 and METTL3 was validated by RNA immunoprecipitation. Flow cytometry was used to estimate cell cycle, apoptosis and mitochondrial activities. NDUFA4 was highly expressed in GC and its high expression indicated a poor prognosis. The knockdown of NDUFA4 could reduce cell proliferation and inhibit tumor growth. Meanwhile, NDUFA4 could promote glycolytic and oxidative metabolism in GC cells, whereas the inhibition of glycolysis suppressed the proliferation and tumor growth of GC. Besides, NDUFA4 inhibited ROS level and promoted MMP level in GC cells, whereas the inhibition of mitochondrial fission could reverse NDUFA4-induced glycolytic and oxidative metabolism and tumor growth of GC. Additionally, METTL3 could increase the m6A level of NDUFA4 mRNA via the m6A reader IGF2BP1 to promote NDUFA4 expression in GC cells. Our study revealed that NDUFA4 was increased by m6A methylation and could promote GC development via enhancing cell glycolysis and mitochondrial fission. NDUFA4 was a potential target for GC treatment.


Subject(s)
Stomach Neoplasms , Cell Line, Tumor , Cell Proliferation/genetics , Electron Transport Complex IV/genetics , Gene Expression Regulation, Neoplastic , Humans , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , RNA, Messenger/genetics , Stomach Neoplasms/pathology
19.
Langmuir ; 38(31): 9669-9677, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35880311

ABSTRACT

We report a synthetic strategy to create gold(Au)-based "sphere-on-plate" hybrid nanostructures (SPHNSs). The surface doping of plate-like Au seeds with Pt/Ag atoms is found to be crucial to increase the lattice spacing, inducing island-like deposition of Au atoms via the Volmer-Weber growth mode. The resulting products are featured with the morphology that quasi-spherical nanoparticles are scattered over the nanoplates. Due to the presence of two distinctly dimensioned particles in one entity, the current Au-based SPHNSs exhibit unique dual plasmonic absorptions, where the visible absorbance centered at 546 nm is related to the size of the anchored particles. Arising from such a plasmonic advantage, the Au-based SPHNSs exhibit enhancement in photothermal conversion under laser irradiations at the wavelengths of both 808 and 1064 nm. The current work offers a feasible route to fabricate noble metal hybrid nanostructures involving zero-dimensional (0D) and two-dimensional (2D) structures, which could work as promising materials for photothermal conversion.

20.
J Dermatol ; 49(10): 1037-1048, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35841232

ABSTRACT

Hair follicles (HFs) play an essential role in sustaining a persistent hair growth cycle. The activities of dermal papilla cells (DPCs) and other cells inside the HFs dominate the process of hair growth. However, the detailed molecular mechanisms remain largely unknown. To investigate the role of citric acid (CA) metabolism in hair growth, we evaluated the effect of citrate synthase (CS)-CA axis on hair growth in vivo and in vitro. Mice hair growth was evaluated by morphology and histopathology analysis. The inflammation and apoptosis levels in mice, HFs, and DPCs were detected by immunohistofluorescence, qPCR, ELISA, western blot, and TUNEL assay. Cell proliferation, cell cycle, and cell apoptosis in DPCs were analyzed by real-time cell analysis and flow cytometer. We found that subcutaneous injection of CA in mice caused significant hair growth suppression, skin lesion, inflammatory response, cell apoptosis, and promotion of catagen entry, compared with the saline control, by activating p-p65 and apoptosis signaling in an NLRP3-dependent manner. In cultured human HFs, CA attenuated the hair shaft production and accelerated HF catagen entry by regulating the above-mentioned pathways. Additionally, CA hampered the proliferation rate of DPCs via inducing cell apoptosis and cell cycle arrest. Considering that citrate synthase (CS) is responsible for CA production and is a rate-limiting enzyme of the tricarboxylic acid cycle, we also investigated the role of CS in CA metabolism and hair growth. As expected, knockdown of CS reduced CA production and reversed CA-induced hair growth inhibition, anagen shrink, inflammation, and apoptosis both in HFs and DPCs. Our experiments demonstrated that CS-CA axis serves as an important mediator and might be a potential therapeutic target in hair growth.


Subject(s)
Citric Acid , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Cell Proliferation , Cells, Cultured , Citrate (si)-Synthase/metabolism , Citrate (si)-Synthase/pharmacology , Citric Acid/metabolism , Citric Acid/pharmacology , Hair , Hair Follicle , Humans , Inflammation/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...