Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters











Publication year range
1.
bioRxiv ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38826399

ABSTRACT

Recent findings in our lab demonstrated that the risk of cocaine relapse is closely linked to the hyperexcitability of cortical pyramidal neurons in the secondary motor cortex (M2), noticeable 45 days after cocaine intravenous self-administration (IVSA). The present study was designed to explore the underlying mechanisms of neuronal alterations in M2. Our hypothesis was that M2 neurons were affected directly by cocaine taking behaviors. This hypothesis was tested by monitoring individual neuronal activity in M2 using MiniScopes for in vivo Ca 2+ imaging in C57BL/6J mice when they had access to cocaine IVSA as a reinforcement (RNF) contingent to active lever press (ALP) but not to inactive lever press (ILP). With support of our established pipeline to processing Ca 2+ imaging data, the current study was designed to monitor M2 neuronal ensembles at the single-neuron level in real time with high temporal resolution and high throughput in each IVSA session and longitudinally among multiple IVSA sessions. Specifically, five consecutive 1-hr daily IVSA sessions were used to model the initial cocaine taking behaviors. Besides detailed analyses of IVSA events (ALP, ILP, and RNF), the data from Ca 2+ imaging recordings in M2 were analyzed by (1) comparing neuronal activation within a daily IVSA session (i.e., the first vs. the last 15 min) and between different daily sessions (i.e., the first vs. the last IVSA day), (2) associating Ca 2+ transients with individual IVSA events, and (3) correlating Ca 2+ transients with the cumulative effects of IVSA events. Our data demonstrated that M2 neurons are exquisitely sensitive to and significantly affected by concurrent operant behaviors and the history of drug exposure, which in turn sculpt the upcoming operant behaviors and the response to drugs. As critical nodes of the reward loop, M2 neurons appear to be the governing center orchestrating the establishment of addiction-like behaviors.

3.
Biomolecules ; 13(10)2023 09 27.
Article in English | MEDLINE | ID: mdl-37892137

ABSTRACT

Dysregulation of metabolic functions in the liver impacts the development of diabetes and metabolic disorders. Normal liver function can be compromised by increased inflammation via the activation of signaling such as nuclear factor (NF)-κB signaling. Notably, we have previously identified lysine demethylase 2A (KDM2A)-as a critical negative regulator of NF-κB. However, there are no studies demonstrating the effect of KDM2A on liver function. Here, we established a novel liver-specific Kdm2a knockout mouse model to evaluate KDM2A's role in liver functions. An inducible hepatic deletion of Kdm2a, Alb-Cre-Kdm2afl/fl (Kdm2a KO), was generated by crossing the Kdm2a floxed mice (Kdm2afl/fl) we established with commercial albumin-Cre transgenic mice (B6.Cg-Tg(Alb-cre)21Mgn/J). We show that under a normal diet, Kdm2a KO mice exhibited increased serum alanine aminotransferase (ALT) activity, L-type triglycerides (TG) levels, and liver glycogen levels vs. WT (Kdm2afl/fl) animals. These changes were further enhanced in Kdm2a liver KO mice in high-fat diet (HFD) conditions. We also observed a significant increase in NF-κB target gene expression in Kdm2a liver KO mice under HFD conditions. Similarly, the KO mice exhibited increased immune cell infiltration. Collectively, these data suggest liver-specific KDM2A deficiency may enhance inflammation in the liver, potentially through NF-κB activation, and lead to liver dysfunction. Our study also suggests that the established Kdm2afl/fl mouse model may serve as a powerful tool for studying liver-related metabolic diseases.


Subject(s)
Liver Diseases , NF-kappa B , Mice , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Liver/metabolism , Inflammation/genetics , Inflammation/metabolism , Signal Transduction , Liver Diseases/metabolism
4.
Biol Psychiatry ; 94(11): 875-887, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37330163

ABSTRACT

BACKGROUND: Most efforts in addiction research have focused on the involvement of the medial prefrontal cortex, including the infralimbic, prelimbic, and anterior cingulate cortical areas, in cocaine-seeking behaviors. However, no effective prevention or treatment for drug relapse is available. METHODS: We focused instead on the motor cortex, including both the primary and supplementary motor areas (M1 and M2, respectively). Addiction risk was evaluated by testing cocaine seeking after intravenous self-administration (IVSA) of cocaine in Sprague Dawley rats. The causal relationship between the excitability of cortical pyramidal neurons (CPNs) in M1/M2 and addiction risk was explored by ex vivo whole-cell patch clamp recordings and in vivo pharmacological or chemogenetic manipulation. RESULTS: Our recordings showed that on withdrawal day 45 (WD45) after IVSA, cocaine, but not saline, increased the excitability of CPNs in the cortical superficial layers (primarily layer 2, denoted L2) but not in layer 5 (L5) in M2. Bilateral microinjection of the GABAA (gamma-aminobutyric acid A) receptor agonist muscimol to the M2 area attenuated cocaine seeking on WD45. More specifically, chemogenetic inhibition of CPN excitability in L2 of M2 (denoted M2-L2) by the DREADD (designer receptor exclusively activated by designer drugs) agonist compound 21 prevented drug seeking on WD45 after cocaine IVSA. This chemogenetic inhibition of M2-L2 CPNs had no effects on sucrose seeking. In addition, neither pharmacological nor chemogenetic inhibition manipulations altered general locomotor activity. CONCLUSIONS: Our results indicate that cocaine IVSA induces hyperexcitability in the motor cortex on WD45. Importantly, the increased excitability in M2, particularly in L2, could be a novel target for preventing drug relapse during withdrawal.


Subject(s)
Cocaine , Motor Cortex , Rats , Animals , Rats, Sprague-Dawley , Prefrontal Cortex/physiology , Pyramidal Cells/physiology , Drug-Seeking Behavior , Recurrence , Self Administration
5.
Cells ; 13(1)2023 12 31.
Article in English | MEDLINE | ID: mdl-38201293

ABSTRACT

High levels of alcohol intake alter brain gene expression and can produce long-lasting effects. FK506-binding protein 51 (FKBP51) encoded by Fkbp5 is a physical and cellular stress response gene and has been associated with alcohol consumption and withdrawal severity. Fkbp5 has been previously linked to neurite outgrowth and hippocampal morphology, sex differences in stress response, and epigenetic modification. Presently, primary cultured Fkbp5 KO and WT mouse neurons were examined for neurite outgrowth and mitochondrial signal with and without alcohol. We found neurite specification differences between KO and WT; particularly, mesh-like morphology was observed after alcohol treatment and confirmed higher MitoTracker signal in cultured neurons of Fkbp5 KO compared to WT at both naive and alcohol-treated conditions. Brain regions that express FKBP51 protein were identified, and hippocampus was confirmed to possess a high level of expression. RNA-seq profiling was performed using the hippocampus of naïve or alcohol-injected (2 mg EtOH/Kg) male and female Fkbp5 KO and WT mice. Differentially expressed genes (DEGs) were identified between Fkbp5 KO and WT at baseline and following alcohol treatment, with female comparisons possessing a higher number of DEGs than male comparisons. Pathway analysis suggested that genes affecting calcium signaling, lipid metabolism, and axon guidance were differentially expressed at naïve condition between KO and WT. Alcohol treatment significantly affected pathways and enzymes involved in biosynthesis (Keto, serine, and glycine) and signaling (dopamine and insulin receptor), and neuroprotective role. Functions related to cell morphology, cell-to-cell signaling, lipid metabolism, injury response, and post-translational modification were significantly altered due to alcohol. In summary, Fkbp5 plays a critical role in the response to acute alcohol treatment by altering metabolism and signaling-related genes.


Subject(s)
Alcohol-Related Disorders , Ethanol , Female , Male , Animals , Mice , Ethanol/pharmacology , Lipid Metabolism , Injections , Alcohol Drinking , Glycine
6.
Int Immunopharmacol ; 111: 109126, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35973368

ABSTRACT

It has been reported that pre-stimulation of the innate immune system can prevent depressive and anxiogenic-like behaviors in chronically stressed male mice. However, it is unclear whether similar effects can be observed in female animals. In the present study, we investigated this question in female mice. Our results showed that a single injection of lipopolysaccharide (LPS; 100 µg/kg) one day before stress exposure prevented increased immobility time in the tail suspension test and forced swimming test and decreased sucrose intake in the sucrose preference test in chronic unpredictable stress (CUS)-treated female mice. The single LPS pre-injection (100 µg/kg) prevented the CUS-induced decrease in (i) time spent in open arms and number of entries into open arms in the elevated plus maze test, (ii) time spent in lit side in the light-dark test, and (iii) time spent in the central region of the open field in the open field test, along with no changes in locomotor activity. It was also found that the single LPS pre-injection in female mice prevented the CUS-induced increase in the expression levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 mRNA in the hippocampus and medial prefrontal cortex. Inhibition of innate immune system stimulation by minocycline pretreatment abrogated the preventive effect of LPS on CUS-induced depressive and anxiogenic-like behaviors and neuroinflammatory responses in the hippocampus and medial prefrontal cortex in female mice. These results suggest that pre-stimulation of the innate immune system by LPS injection may prevent the development of behavioral abnormalities in female mice.


Subject(s)
Depression , Lipopolysaccharides , Animals , Behavior, Animal , Depression/metabolism , Disease Models, Animal , Female , Hippocampus , Immunity, Innate , Lipopolysaccharides/pharmacology , Male , Mice , Sucrose/metabolism , Sucrose/pharmacology
7.
Front Pharmacol ; 13: 829966, 2022.
Article in English | MEDLINE | ID: mdl-35242039

ABSTRACT

Indole-3-carbinol (I3C), a phytochemical enriched in most cruciferous vegetables, has been shown to display various biological activities such as anti-oxidative stress, anti-inflammation, and anti-carcinogenesis. In this study, we investigated the regulatory effect of I3C on chronic stress-induced behavioral abnormalities in mice. Results showed that repeated I3C treatment at the dose of 10, 30, and 60 mg/kg prevented chronic social defeat stress (CSDS)-induced behavioral abnormalities in the tail suspension test, forced swimming test, sucrose preference test, and social interaction test in mice, and did not affect CSDS-induced behavioral abnormalities in the elevated plus maze, light-dark test, and open-field test, suggesting that the I3C treatment selectively prevents the onset of depression- but not anxiety-like behaviors in chronically stressed mice. Further analysis demonstrated that repeated I3C treatment (60 mg/kg, 10 days) prevented CSDS-induced increases in levels of interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor-α (TNF-α) mRNA and protein, but did not affect CSDS-induced decreases in levels of IL-4, IL-10, and Ym-1 mRNA and/or protein in the hippocampus and prefrontal cortex, suggesting that I3C can selectively prevent chronic stress-induced pro-inflammatory but not anti-inflammatory responses in the brain. Further analysis showed that repeated I3C treatment (60 mg/kg, 10 days) prevented CSDS-induced increases in levels of nitrite and malondialdehyde (MDA), decreases in contents of glutathione (GSH), and decreases in levels of brain derived neurotrophic factor (BDNF) protein in the hippocampus and prefrontal cortex. These results demonstrated that I3C selectively prevents chronic stress-induced depression-like behaviors in mice likely through suppressing neuroinflammation and oxido-nitrosative stress in the brain.

8.
Cell Mol Life Sci ; 79(3): 175, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35244772

ABSTRACT

FK506-binding protein 51 (encoded by Fkpb51, also known as Fkbp5) has been associated with stress-related mental illness. To investigate its function, we studied the morphological consequences of Fkbp51 deletion. Artificial Intelligence-assisted morphological analysis revealed that male Fkbp51 knock-out (KO) mice possess more elongated dentate gyrus (DG) but shorter hippocampal height in coronal sections when compared to WT. Primary cultured Fkbp51 KO hippocampal neurons were shown to exhibit larger dendritic outgrowth than wild-type (WT) controls and pharmacological manipulation experiments suggest that this may occur through the regulation of microtubule-associated protein. Both in vitro primary culture and in vivo labeling support a role for FKBP51 in the regulation of microtubule-associated protein expression. Furthermore, Fkbp51 KO hippocampi exhibited decreases in ßIII-tubulin, MAP2, and Tau protein levels, but a greater than 2.5-fold increase in Parkin protein. Overexpression and knock-down FKBP51 demonstrated that FKBP51 negatively regulates Parkin in a dose-dependent and ubiquitin-mediated manner. These results indicate a potential novel post-translational regulatory mechanism of Parkin by FKBP51 and the significance of their interaction on disease onset. KO has more flattened hippocampus using AI-assisted measurement Both pyramidal cell layer (PCL) of CA and granular cell layer (GCL) of DG distinguishable as two layers: deep cell layer and superficial layer. Distinct MAP2 expression between deep and superficial layer between KO and WT, Higher Parkin expression in KO brain Mechanism of FKBP51 inhibition resulting in Parkin, MAP2, Tau, and Tubulin expression differences between KO and WT mice, and resulting neurite outgrowth differences.


Subject(s)
Hippocampus/metabolism , Tacrolimus Binding Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Animals , Brain/anatomy & histology , Cells, Cultured , Hippocampus/anatomy & histology , Mice , Mice, Knockout , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Neurons/cytology , Neurons/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Tacrolimus Binding Proteins/antagonists & inhibitors , Tacrolimus Binding Proteins/deficiency , Tacrolimus Binding Proteins/metabolism , Tubulin/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Up-Regulation , tau Proteins/metabolism
9.
Mol Psychiatry ; 27(4): 2146-2157, 2022 04.
Article in English | MEDLINE | ID: mdl-35105968

ABSTRACT

It is essential to identify the neuronal mechanisms of Alzheimer's Disease (AD)-associated neuropsychiatric symptoms, e.g., apathy, before improving the life quality of AD patients. Here, we focused on the nucleus accumbens (NAc), a critical brain region processing motivation, also known to display AD-associated pathological changes in human cases. We found that the synaptic calcium permeable (CP)-AMPA receptors (AMPARs), which are normally absent in the NAc, can be revealed by acute exposure to Aß oligomers (AßOs), and play a critical role in the emergence of synaptic loss and motivation deficits. Blockade of NAc CP-AMPARs can effectively prevent AßO-induced downsizing and pruning of spines and silencing of excitatory synaptic transmission. We conclude that AßO-triggered synaptic insertion of CP-AMPARs is a key mechanism mediating synaptic degeneration in AD, and preserving synaptic integrity may prevent or delay the onset of AD-associated psychiatric symptoms.


Subject(s)
Alzheimer Disease , Receptors, AMPA , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Calcium/metabolism , Humans , Motivation , Nucleus Accumbens/metabolism , Receptors, AMPA/metabolism , Receptors, Calcium-Sensing , Synapses/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
10.
Int J Neuropsychopharmacol ; 25(5): 399-411, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35015863

ABSTRACT

BACKGROUNDS: Our recent studies reported that a single injection with lipopolysaccharide (LPS) before stress exposure prevents depression-like behaviors in stressed mice. Monophosphoryl lipid A (MPL) is a derivative of LPS that lacks the undesirable properties of LPS. We hypothesize that MPL can exert a prophylactic effect on depression. METHODS: The experimental mice were pre-injected with MPL before stress exposure. Depression in mice was induced through chronic social defeat stress (CSDS). Behavioral tests were conducted to identify depression-like behaviors. Real-time polymerase chain reaction and biochemical assays were performed to examine the gene and protein expression levels of pro-inflammatory cytokines. RESULTS: A single MPL injection 1 day before stress exposure at the dosages of 400, 800, and 1600 µg/kg but not 200 µg/kg prevented CSDS-induced depression-like behaviors in mice. This effect of MPL, however, vanished with the extension of the interval time between drug injection and stress exposure from 1 day or 5 days to 10 days, which was rescued by a second MPL injection 10 days after the first MPL injection or by a 4× MPL injection 10 days before stress exposure. A single MPL injection (800 µg/kg) before stress exposure prevented CSDS-induced increases in the gene expression levels of pro-inflammatory cytokines in the hippocampus and prefrontal cortex. Pre-inhibiting the innate immune stimulation by minocycline pretreatment (40 mg/kg) abrogated the preventive effect of MPL on CSDS-induced depression-like behaviors and neuroinflammatory responses in animal brains. CONCLUSIONS: MPL, through innate immune stimulation, prevents stress-induced depression-like behaviors in mice by preventing neuroinflammatory responses.


Subject(s)
Depression , Lipopolysaccharides , Stress, Psychological , Animals , Cytokines/metabolism , Depression/drug therapy , Depression/etiology , Depression/metabolism , Depression/prevention & control , Lipid A/analogs & derivatives , Lipopolysaccharides/pharmacology , Mice , Stress, Psychological/drug therapy , Stress, Psychological/metabolism
11.
Neuropharmacology ; 207: 108950, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35074304

ABSTRACT

Anxiety is a common psychological disease which can induce severe social burdens. Searching methods that prevent the onset of anxiety is of great significance for ameliorating the social and individual problems induced by this type of disease. In this study, we investigated how innate immune pre-stimulation influences the anxiety-like behaviors in chronically stressed mice. Our results showed that a single injection of an innate immune stimulant lipopolysaccharide (LPS) at the dose of 50, 100, and 500 µg/kg 1 day before stress exposure prevented chronic social defeat stress (CSDS)-induced anxiety-like behaviors in mice. A single injection of LPS (100 µg/kg) 5 days before stress exposure produced similar preventive effects on CSDS-induced anxiety-like behaviors, while similar effects were not observed at the condition of 10-days interval between LPS injection and stress exposure. A second LPS injection 10 days after the first LPS injection or a 4 × LPS injection 10 days before stress exposure also prevented CSDS-induced anxiety-like behaviors. Moreover, a single injection of LPS (100 µg/kg) 1 day before stress exposure prevented the production of pro-inflammatory cytokines in the hippocampus and prefrontal cortex of CSDS mice. Suppression of innate immune stimulation by minocycline pretreatment simultaneously abrogated the preventive effect of LPS pre-injection (100 µg/kg) on CSDS-induced anxiety-like behaviors and pro-inflammatory cytokine production in the brain. Our results demonstrated that the pre-stimulation of the innate immune system can prevent the development of anxiety-like behaviors and the progression of the neuroinflammatory responses in the brain in chronically stressed mice.


Subject(s)
Anxiety/immunology , Anxiety/prevention & control , Hippocampus/immunology , Immunity, Innate/drug effects , Lipopolysaccharides/pharmacology , Prefrontal Cortex/immunology , Stress, Psychological , Animals , Anxiety/etiology , Behavior, Animal/drug effects , Behavior, Animal/physiology , Cytokines , Disease Models, Animal , Hippocampus/drug effects , Lipopolysaccharides/administration & dosage , Mice , Prefrontal Cortex/drug effects , Stress, Psychological/complications , Stress, Psychological/immunology , Stress, Psychological/prevention & control
12.
Front Neural Circuits ; 15: 711564, 2021.
Article in English | MEDLINE | ID: mdl-34483848

ABSTRACT

Excitotoxicity is one of the primary mechanisms of cell loss in a variety of diseases of the central and peripheral nervous systems. Other than the previously established signaling pathways of excitotoxicity, which depend on the excessive release of glutamate from axon terminals or over-activation of NMDA receptors (NMDARs), Ca2+ influx-triggered excitotoxicity through Ca2+-permeable (CP)-AMPA receptors (AMPARs) is detected in multiple disease models. In this review, both acute brain insults (e.g., brain trauma or spinal cord injury, ischemia) and chronic neurological disorders, including Epilepsy/Seizures, Huntington's disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), chronic pain, and glaucoma, are discussed regarding the CP-AMPAR-mediated excitotoxicity. Considering the low expression or absence of CP-AMPARs in most cells, specific manipulation of the CP-AMPARs might be a more plausible strategy to delay the onset and progression of pathological alterations with fewer side effects than blocking NMDARs.


Subject(s)
Calcium , Nervous System Diseases , Receptors, AMPA , Calcium/metabolism , Glutamic Acid , Humans , Nervous System Diseases/metabolism , Receptors, AMPA/metabolism , Receptors, Calcium-Sensing
13.
Neuropharmacology ; 193: 108621, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34062163

ABSTRACT

Innate immune activation has been shown to reduce the severity of nervous system disorders such as brain ischemia and traumatic brain damage. Macrophage-colony stimulating factor (M-CSF), a drug that is used to treat hematological system disease, is an enhancer of the innate immune response. In the present study, we evaluated the effect of M-CSF preconditioning on chronic social defeat stress (CSDS)-induced depression-like behaviors in mice. Results showed that a single M-CSF injection 1 day before stress exposure at the dose of 100 and 500 µg/kg, or a single M-CSF injection (100 µg/kg) 1 or 5 days but not 10 days before stress exposure prevented CSDS-induced depression-like behaviors in mice. Further analysis showed that a second M-CSF injection 10 days after the first M-CSF injection and a 2 × or 4 × M-CSF injections 10 days before stress exposure also prevented CSDS-induced depression-like behaviors. Molecular studies revealed that a single M-CSF injection prior to stress exposure skewed the neuroinflammatory responses in the brain in CSDS-exposed mice towards an anti-inflammatory phenotype. These behavioral and molecular actions of M-CSF were correlated with innate immune stimulation, as pre-inhibiting the innate immune activation by minocycline pretreatment (40 mg/kg) abrogated the preventive effect of M-CSF on CSDS-induced depression-like behaviors and neuroinflammatory responses. These results provide evidence to show that innate immune activation by M-CSF pretreatment may prevent chronic stress-induced depression-like behaviors via preventing the development of neuroinflammatory response in the brain, which may help to develop novel strategies for the prevention of depression.


Subject(s)
Depression/drug therapy , Macrophage Colony-Stimulating Factor/pharmacology , Stress, Psychological/drug therapy , Animals , Hippocampus/drug effects , Hippocampus/metabolism , Inflammation , Male , Mice , Mice, Inbred C57BL , Minocycline/pharmacology , Social Behavior , Social Interaction/drug effects
14.
Inflammation ; 44(4): 1381-1395, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33511484

ABSTRACT

Neuroinflammation and oxidative stress play critical roles in pathogenesis of depression. Diallyl disulfide (DADS), an active compound in garlic oil, has been shown to exhibit obvious anti-inflammatory and anti-oxidative activities. Preliminary evidence indicates that depression is associated with high levels of pro-inflammatory cytokines and oxidative markers, suggesting that inhibition of neuroinflammatory response and oxidative stress may be beneficial for depression interruption. Here, we investigated the antidepressant effect of DADS as well as it mechanisms in a depression-like model induced by lipopolysaccharide (LPS). Similarly to imipramine (10 mg/kg), a clinical antidepressant, DADS (40 or 80 mg/kg), which was administered 1 h before LPS treatment (pre-LPS) or 1.5 h and 23.5 h after LPS treatment (post-LPS), prevented and reversed LPS (100 µg/kg)-induced increase in immobility time in the tail suspension test (TST) and forced swim test (FST) in mice. Mechanistic studies revealed that DADS pre-treatment or post-treatment at the dose of 40 and 80 mg/kg prevented and reversed (i) LPS-induced increases in interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and nitric oxide (NO) levels in the hippocampus and prefrontal cortex, (ii) LPS-induced increases in contents of malondialdehyde (MDA), a parameter reflecting high levels of oxidative stress, and (iii) LPS-induced decreases in contents of GSH, a marker reflecting weakened anti-oxidative ability, in the hippocampus and prefrontal cortex in mice. These results indicate that DADS is comparable to imipramine in effectively ameliorating LPS-induced depression-like behaviors in mice, providing a potential value for DADS in prevention and/or therapy of depression.


Subject(s)
Allyl Compounds/administration & dosage , Depression/metabolism , Disulfides/administration & dosage , Lipopolysaccharides/toxicity , Neuroinflammatory Diseases/metabolism , Nitrosative Stress/drug effects , Oxidative Stress/drug effects , Animals , Antihypertensive Agents/administration & dosage , Brain/drug effects , Brain/metabolism , Depression/chemically induced , Depression/drug therapy , Dose-Response Relationship, Drug , Drug Administration Schedule , Male , Mice , Mice, Inbred C57BL , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/drug therapy , Nitrosative Stress/physiology , Oxidative Stress/physiology
15.
CNS Neurosci Ther ; 27(2): 196-205, 2021 02.
Article in English | MEDLINE | ID: mdl-33118700

ABSTRACT

AIMS: Limited vs extended drug exposure has been proposed as one of the key factors in determining the risk of relapse, which is the primary characteristic of addiction behaviors. The current studies were designed to explore the related behavioral effects and neuronal alterations in the insular cortex (IC), an important brain region involved in addiction. METHODS: Experiments started with rats at the age of 35 days, a typical adolescent stage when initial drug exposure occurs often in humans. The drug-seeking/taking behaviors, and membrane properties and intrinsic excitability of IC pyramidal neurons were measured on withdrawal day (WD) 1 and WD 45-48 after limited vs extended cocaine intravenous self-administration (IVSA). RESULTS: We found higher cocaine-taking behaviors at the late withdrawal period after limited vs extended cocaine IVSA. We also found minor but significant effects of limited but not extended cocaine exposure on the kinetics and amplitude of action potentials on WD 45, in IC pyramidal neurons. CONCLUSION: Our results indicate potential high risks of relapse in young rats with limited but not extended drug exposure, although the adaptations detected in the IC may not be sufficient to explain the neural changes of higher drug-taking behaviors induced by limited cocaine IVSA.


Subject(s)
Action Potentials/drug effects , Administration, Intravenous , Cocaine/administration & dosage , Drug-Seeking Behavior/drug effects , Insular Cortex/drug effects , Action Potentials/physiology , Administration, Intravenous/methods , Animals , Dopamine Uptake Inhibitors/administration & dosage , Drug Administration Schedule , Drug-Seeking Behavior/physiology , Insular Cortex/physiology , Male , Rats , Rats, Sprague-Dawley , Self Administration
16.
J Neurosci Res ; 99(2): 649-661, 2021 02.
Article in English | MEDLINE | ID: mdl-33094531

ABSTRACT

Adolescent alcohol drinking, primarily in the form of binge-drinking episodes, is a serious public health concern. Binge drinking in laboratory animals has been modeled by a procedure involving chronic intermittent ethanol (CIE) administration, as compared with chronic intermittent water (CIW). The prolonged effects of adolescent binge alcohol exposure in adults, such as high risk of developing alcohol use disorder, are severe but available treatments in the clinic are limited. One reason is the lack of sufficient understanding about the associated neuronal alterations. The involvement of the insular cortex, particularly the anterior agranular insula (AAI), has emerged as a critical region to explain neuronal mechanisms of substance abuse. This study was designed to evaluate the functional output of the AAI by measuring the intrinsic excitability of pyramidal neurons from male rats 2 or 21 days after adolescent or adult CIE treatment. Decreases in intrinsic excitability in AAI pyramidal neurons were detected 21 days, relative to 2 days, after adolescent CIE. Interestingly, the decreased intrinsic excitability in the AAI pyramidal neurons was observed 2 days after adult CIE, compared to adult CIW, but no difference was found between 2 versus 21 days after adult CIE. These data indicate that, although the AAI is influenced within a limited period after adult but not adolescent CIE, neuronal alterations in AAI are affected during the prolonged period of withdrawal from adolescent but not adult CIE. This may explain the prolonged vulnerability to mental disorders of subjects with an alcohol binge history during their adolescent stage.


Subject(s)
Binge Drinking/physiopathology , Ethanol/toxicity , Insular Cortex/drug effects , Age Factors , Animals , Ethanol/administration & dosage , Insular Cortex/growth & development , Insular Cortex/physiopathology , Male , Patch-Clamp Techniques , Pyramidal Cells/drug effects , Pyramidal Cells/physiology , Rats , Rats, Sprague-Dawley , Sexual Maturation
17.
Eur J Pharmacol ; 893: 173803, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33359648

ABSTRACT

Diallyl disulfide (DADS), an oil-soluble sulfur compound that is responsible for the biological effects of garlic, displays numerous biological activities, among which its anti-cancer activities are the most famous ones. In recent years, the pharmacological effects of DADS other than its anti-carcinogenic activities have attracted numerous attentions. For example, it has been reported that DADS can prevent the microglia-mediated neuroinflammatory response and depression-like behaviors in mice. In the cardiovascular system, DADS administration was found to ameliorate the isoproterenol- or streptozotocin-induced cardiac dysfunction via the activation of the nuclear factor E2-related factor 2 (Nrf2) and insulin-like growth factor (IGF)-phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) signaling. DADS administration can also produce neuroprotective effects in animal models of Alzheimer's disease and protect the heart, endothelium, liver, lung, and kidney against cellular or tissue damages induced by various toxic factors, such as the oxidized-low density lipoprotein (ox-LDL), carbon tetrachloride (CCl4), ethanol, acetaminophen, Cis-Diammine Dichloroplatinum (CisPt), and gentamicin. The major mechanisms of action of DADS in disease prevention and/or treatment include inhibition of inflammation, oxidative stress, and cellular apoptosis. Mechanisms, including the activation of Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), protein kinase A (PKA), and cyclic adenosine monophosphate-response element binding protein (CREB) and the inhibition of histone deacetylases (HDACs), can also mediate the cellular protective effects of DADS in different tissues and organs. In this review, we summarize and discuss the pharmacological effects of DADS other than its anti-carcinogenic activities, aiming to reveal more possibilities for DADS in disease prevention and/or treatment.


Subject(s)
Allyl Compounds/pharmacology , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Disulfides/pharmacology , Anticarcinogenic Agents/pharmacology , Humans
18.
Drug Alcohol Depend ; 216: 108309, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32998090

ABSTRACT

BACKGROUND: Adolescence and early-adulthood are vulnerable developmental periods during which binge drinking can have long-lasting effects on brain function. However, little is known about the effects of binge drinking on the pyramidal cells of the prelimbic cortex (PrL) during early and protracted withdrawal periods. METHODS: In the present study, we performed whole-cell patch clamp recordings and dendritic spine staining to examine the intrinsic excitability, spontaneous excitatory post-synaptic currents (sEPSCs), and spine morphology of pyramidal cells in the PrL from rats exposed to chronic intermittent ethanol (CIE) during adolescence or early-adulthood. RESULTS: Compared to chronic intermittent water (CIW)-treated controls, the excitability of PrL-L5 pyramidal neurons was significantly increased 21 days after adolescent CIE but decreased 21 days after early-adult CIE. No changes of excitability in PrL Layer (L) 5 were detected 2 days after either adolescent or early-adulthood CIE. Interestingly, decreases in sEPSC amplitude and increases in thin spines ratio were detected 2 days after adolescent CIE. Furthermore, decreased frequency and amplitude of sEPSCs, accompanied by a decrease in the density of total spines and non-thin spines were observed 21 days after adolescent CIE. In contrast, increased frequency and amplitude of sEPSCs, accompanied by increased densities of total spines and non-thin spines were found 21 days after early adult CIE. CONCLUSION: CIE produced prolonged neuronal and synaptic alterations in PrL-L5, and the developmental stage, i.e., adolescence vs. early-adulthood when subjects receive CIE, is a key factor in determining the direction of these changes.


Subject(s)
Ethanol/administration & dosage , Prefrontal Cortex/drug effects , Prefrontal Cortex/growth & development , Pyramidal Cells/drug effects , Pyramidal Cells/physiology , Age Factors , Animals , Male , Neurons/drug effects , Neurons/physiology , Organ Culture Techniques , Rats , Rats, Sprague-Dawley
19.
Neuropharmacology ; 180: 108310, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32950559

ABSTRACT

Prenatal alcohol exposure (PAE)-induced clinical symptoms have been widely reported but effective treatments are not yet available due to our limited knowledge of the neuronal mechanisms underlying behavioral outputs. Operant behaviors, including both goal-directed and habitual actions, are essential for everyday life. The dorsomedial striatum (DMS) and the dorsolateral striatum (DLS) have been identified as mediating each type of instrumental behavior, respectively. The current studies were designed to evaluate the effects of PAE (i.e., 3 g/kg, twice a day on gestational days 17-20) on goal-directed vs. habitual behaviors in both females and males during their adolescent and adult stages. We found that PAE-treated adult, but not adolescent, males display similar habitual oral sucrose self-administration but reduced goal-directed sucrose self-administration, compared to those treated by prenatal control (water) exposure (PCE). There were no differences in either habitual or goal-directed sucrose taking between PCE- vs. PAE-treated adolescent and adult females. These results indicate sex- and age-specific effects of PAE on operant behaviors. Further, whole-cell patch clamp recordings showed that the excitability of medium-sized spiny neurons (MSNs) in the posterior DMS (pDMS), but not the anterior DMS (aDMS), was significantly decreased in PAE-treated adult male rats. Notably, chemogenetic enhancement of MSN excitability in the pDMS by the DREADD agonist, compound 21, rescued the motivation of PAE-treated male adult rats. These data suggest that the pDMS may be a key neuronal substrate mediating the PAE-induced low motivation in male adults.


Subject(s)
Corpus Striatum/drug effects , Ethanol/toxicity , Motivation/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/psychology , Sex Characteristics , Age Factors , Animals , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Corpus Striatum/metabolism , Ethanol/administration & dosage , Female , Male , Motivation/physiology , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Rats , Rats, Sprague-Dawley , Self Administration
20.
Alcohol Clin Exp Res ; 44(6): 1214-1223, 2020 06.
Article in English | MEDLINE | ID: mdl-32311102

ABSTRACT

BACKGROUND AND PURPOSE: Binge drinking is a serious problem among adolescents and young adults despite its adverse consequences on the brain and behavior. One area that remains poorly understood concerns the impact of chronic intermittent ethanol (CIE) exposure on incentive learning. METHODS: Here, we examined the effects of CIE exposure during different developmental stages on conditioned approach and conditioned reward learning in rats experiencing acute or protracted withdrawal from alcohol. Two or 21 days after adolescent or adult CIE exposure, male rats were exposed to pairings of a light stimulus (CS) and food pellets for 3 consecutive daily sessions (30 CS-food pellet pairings per session). This was followed by conditioned approach testing measuring responses (food trough head entries) to the CS-only presentations and by conditioned reward testing measuring responses on a lever producing the CS and on another producing a tone. We then measured behavioral sensitization to repeated injections of heroin (2 mg/kg/d for 9 days). RESULTS: Adolescent and adult alcohol-treated rats showed significantly impaired conditioned reward learning regardless of withdrawal period (acute or prolonged). We found no evidence of changes to conditioned approach learning after adolescent or adult exposure to CIE. Finally, in addition to producing long-term impairments in incentive learning, CIE exposure enhanced locomotor activity in response to heroin and had no effect on behavioral sensitization to heroin regardless of age and withdrawal period. CONCLUSIONS: Our work sets a framework for identifying CIE-induced alterations in incentive learning and inducing susceptibility to subsequent opioid effects.


Subject(s)
Behavior, Animal/physiology , Binge Drinking/physiopathology , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Heroin/pharmacology , Learning/drug effects , Locomotion/drug effects , Narcotics/pharmacology , Reward , Animals , Choice Behavior/drug effects , Learning/physiology , Male , Motivation , Rats
SELECTION OF CITATIONS
SEARCH DETAIL