Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(16): e2311659, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38175183

ABSTRACT

Enamel repair is crucial for restoring tooth function and halting dental caries. However, contemporary research often overlooks the retention of organic residues within the repair layer, which hinders the growth of dense crystals and compromises the properties of the repaired enamel. During the maturation of natural enamel, the organic matrix undergoes enzymatic processing to facilitate further crystal growth, resulting in a highly mineralized tissue. Inspired by this process, a biomimetic self-maturation mineralization system is developed, comprising ribonucleic acid-stabilized amorphous calcium phosphate (RNA-ACP) and ribonuclease (RNase). The RNA-ACP induces initial mineralization in the form of epitaxial crystal growth, while the RNase present in saliva automatically triggers a biomimetic self-maturation process. The mechanistic study further indicates that RNA degradation prompts conformational rearrangement of the RNA-ACP, effectively excluding the organic matter introduced earlier. This exclusion process promotes lateral crystal growth, resulting in the generation of denser enamel-like apatite crystals that are devoid of organic residues. This strategy of eliminating organic residues from enamel crystals enhances the mechanical and physiochemical properties of the repaired enamel. The present study introduces a conceptual biomimetic mineralization strategy for effective enamel repair in clinical practice and offers potential insights into the mechanisms of biomineral formation.


Subject(s)
Biomimetics , Calcium Phosphates , Dental Caries , Humans , RNA , Ribonucleases , Dental Enamel
2.
Carbohydr Polym ; 310: 120738, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36925258

ABSTRACT

Chondroitin sulfate (CS) is an important extracellular matrix component of mineralized tissues. It participates in biomineralization, osteoblast differentiation and promotes bone tissue repair in vitro. However, the mechanism in which CS functions is unclear. Accordingly, an in-depth investigation of how CS participates in mineralization was conducted in the present study. Chondroitin sulfate was found to directly induce intrafibrillar mineralization of the collagen matrix. The mineralization outcome was dependent on whether CS remained free in the extracellular matrix or bound to core proteins; mineralization only occurred when CS existed in a free state. The efficacy of mineralization appeared to increase with ascending CS concentration. This discovery spurred the authors to identify the cause of heterotopic ossification in the Achilles tendon. Chondroitin sulfate appeared to be a therapeutic target for the management of diseases associated with heterotopic calcification. A broader perspective was presented on the applications of CS in tissue engineering.


Subject(s)
Biomineralization , Chondroitin Sulfates , Chondroitin Sulfates/pharmacology , Bone and Bones/metabolism , Collagen/metabolism , Extracellular Matrix/metabolism
3.
Adv Healthc Mater ; 12(11): e2203086, 2023 04.
Article in English | MEDLINE | ID: mdl-36594680

ABSTRACT

A poor seal of the titanium implant-soft tissue interface provokes bacterial invasion, aggravates inflammation, and ultimately results in implant failure. To ensure the long-term success of titanium implants, lactoferrin-derived amyloid is coated on the titanium surface to increase the expression of cell integrins and hemidesmosomes, with the goal of promoting soft tissue seal and imparting antibacterial activity to the implants. The lactoferrin-derived amyloid coated titanium structures contain a large number of amino and carboxyl groups on their surfaces, and promote proliferation and adhesion of epithelial cells and fibroblasts via the PI3K/AKT pathway. The amyloid coating also has a strong positive charge and possesses potent antibacterial activities against Staphylococcus aureus and Porphyromonas gingivalis. In a rat immediate implantation model, the amyloid-coated titanium implants form gingival junctional epithelium at the transmucosal region that resembles the junctional epithelium in natural teeth. This provides a strong soft tissue seal to wall off infection. Taken together, lactoferrin-derived amyloid is a dual-function transparent coating that promotes soft tissue seal and possesses antibacterial activity. These unique properties enable the synthesized amyloid to be used as potential biological implant coatings.


Subject(s)
Dental Implants , Titanium , Rats , Animals , Titanium/pharmacology , Titanium/chemistry , Lactoferrin/pharmacology , Phosphatidylinositol 3-Kinases , Surface Properties , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry
4.
ACS Biomater Sci Eng ; 9(4): 1733-1756, 2023 04 10.
Article in English | MEDLINE | ID: mdl-34436861

ABSTRACT

Tooth biomineralization is a dynamic and complicated process influenced by local and systemic factors. Abnormal mineralization in teeth occurs when factors related to physiologic mineralization are altered during tooth formation and after tooth maturation, resulting in microscopic and macroscopic manifestations. The present Review provides timely information on the mechanisms and structural alterations of different forms of pathological tooth mineralization. A comprehensive study of these alterations benefits diagnosis and biomimetic treatment of abnormal mineralization in patients.


Subject(s)
Odontoblasts , Tooth , Humans , Calcification, Physiologic
5.
Fundam Res ; 3(6): 1025-1038, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38933004

ABSTRACT

Ectopic mineralization refers to the deposition of mineralized complexes in the extracellular matrix of soft tissues. Calcific aortic valve disease, vascular calcification, gallstones, kidney stones, and abnormal mineralization in arthritis are common examples of ectopic mineralization. They are debilitating diseases and exhibit excess mortality, disability, and morbidity, which impose on patients with limited social or financial resources. Recent recognition that inflammation plays an important role in ectopic mineralization has attracted the attention of scientists from different research fields. In the present review, we summarize the origin of inflammation in ectopic mineralization and different channels whereby inflammation drives the initiation and progression of ectopic mineralization. The current knowledge of inflammatory milieu in pathological mineralization is reviewed, including how immune cells, pro-inflammatory mediators, and osteogenic signaling pathways induce the osteogenic transition of connective tissue cells, providing nucleating sites and assembly of aberrant minerals. Advances in the understanding of the underlying mechanisms involved in inflammatory-mediated ectopic mineralization enable novel strategies to be developed that may lead to the resolution of these enervating conditions.

7.
ACS Appl Mater Interfaces ; 14(12): 14103-14119, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35306805

ABSTRACT

The periosteum orchestrates the microenvironment of bone regeneration, including facilitating local neuro-vascularization and regulating immune responses. To mimic the role of natural periosteum for bone repair enhancement, we adopted the principle of biomimetic mineralization to delicately inlay amorphous cerium oxide within eggshell membranes (ESMs) for the first time. Cerium from cerium oxide possesses unique ability to switch its oxidation state from cerium III to cerium IV and vice versa, which provides itself promising potential for biomedical applications. ESMs are mineralized with cerium(III, IV) oxide and examined for their biocompatibility. Apart from serving as physical barriers, periosteum-like cerium(III, IV) oxide-mineralized ESMs are biocompatible and can actively regulate immune responses and facilitate local neuro-vascularization along with early-stage bone regeneration in a murine cranial defect model. During the healing process, cerium-inlayed biomimetic periosteum can boost early osteoclastic differentiation of macrophage lineage cells, which may be the dominant mediator of the local repair microenvironment. The present work provides novel insights into expanding the definition and function of a biomimetic periosteum to boost early-stage bone repair and optimize long-term repair with robust neuro-vascularization. This new treatment strategy which employs multifunctional bone-and-periosteum-mimicking systems creates a highly concerted microenvironment to expedite bone regeneration.


Subject(s)
Cerium , Periosteum , Animals , Biomimetics , Bone Regeneration , Egg Shell , Mice , Osteogenesis , Oxides , Periosteum/physiology , Tissue Engineering
9.
Bioact Mater ; 9: 475-490, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34820584

ABSTRACT

Sensory nerves promote osteogenesis through the release of neuropeptides. However, the potential application and mechanism in which sensory nerves promote healing of bone defects in the presence of biomaterials remain elusive. The present study identified that new bone formation was more abundantly produced after implantation of silicified collagen scaffolds into defects created in the distal femur of rats. The wound sites were accompanied by extensive nerve innervation and angiogenesis. Sensory nerve dysfunction by capsaicin injection resulted in significant inhibition of silicon-induced osteogenesis in the aforementioned rodent model. Application of extracellular silicon in vitro induced axon outgrowth and increased expression of semaphorin 3 A (Sema3A) and semaphorin 4D (Sema4D) in the dorsal root ganglion (DRG), as detected by the upregulation of signaling molecules. Culture medium derived from silicon-stimulated DRG cells promoted proliferation and differentiation of bone marrow mesenchymal stem cells and endothelial progenitor cells. These effects were inhibited by the use of Sema3A neutralizing antibodies but not by Sema4D neutralizing antibodies. Knockdown of Sema3A in DRG blocked silicon-induced osteogenesis and angiogenesis almost completely in a femoral defect rat model, whereas overexpression of Sema3A promoted the silicon-induced phenomena. Activation of "mechanistic target of rapamycin" (mTOR) pathway and increase of Sema3A production were identified in the DRG of rats that were implanted with silicified collagen scaffolds. These findings support the role of silicon in inducing Sema3A production by sensory nerves, which, in turn, stimulates osteogenesis and angiogenesis. Taken together, silicon has therapeutic potential in orthopedic rehabilitation.

10.
Adv Sci (Weinh) ; 9(5): e2103693, 2022 02.
Article in English | MEDLINE | ID: mdl-34939364

ABSTRACT

Although deoxyribonucleic acid (DNA) is the genetic coding for the very essence of life, these macromolecules or components thereof are not necessarily lost after a cell dies. There appears to be a link between extracellular DNA and biomineralization. Here the authors demonstrate that extracellular DNA functions as an initiator of collagen intrafibrillar mineralization. This is confirmed with in vitro and in vivo biological mineralization models. Because of their polyanionic property, extracellular DNA molecules are capable of stabilizing supersaturated calcium phosphate solution and mineralizing 2D and 3D collagen matrices completely as early as 24 h. The effectiveness of extracellular DNA in biomineralization of collagen is attributed to the relatively stable formation of amorphous liquid droplets triggered by attraction of DNA to the collagen fibrils via hydrogen bonding. These findings suggest that extracellular DNA is biomimetically significant for fabricating inorganic-organic hybrid materials for tissue engineering. DNA-induced collagen intrafibrillar mineralization provides a clue to the pathogenesis of ectopic mineralization in different body tissues. The use of DNase for targeting extracellular DNA at destined tissue sites provides a potential solution for treatment of diseases associated with ectopic mineralization.


Subject(s)
Biomimetic Materials , Biomineralization , Collagen , DNA , Biomimetic Materials/chemistry , Collagen/chemistry , DNA/chemistry , Extracellular Matrix , Tissue Engineering
11.
Adv Sci (Weinh) ; 8(7): 2003390, 2021 04.
Article in English | MEDLINE | ID: mdl-33854888

ABSTRACT

For the past two decades, the function of intrabony nerves on bone has been a subject of intense research, while the function of bone on intrabony nerves is still hidden in the corner. In the present review, the possible crosstalk between bone and intrabony peripheral nerves will be comprehensively analyzed. Peripheral nerves participate in bone development and repair via a host of signals generated through the secretion of neurotransmitters, neuropeptides, axon guidance factors and neurotrophins, with additional contribution from nerve-resident cells. In return, bone contributes to this microenvironmental rendezvous by housing the nerves within its internal milieu to provide mechanical support and a protective shelf. A large ensemble of chemical, mechanical, and electrical cues works in harmony with bone marrow stromal cells in the regulation of intrabony nerves. The crosstalk between bone and nerves is not limited to the physiological state, but also involved in various bone diseases including osteoporosis, osteoarthritis, heterotopic ossification, psychological stress-related bone abnormalities, and bone related tumors. This crosstalk may be harnessed in the design of tissue engineering scaffolds for repair of bone defects or be targeted for treatment of diseases related to bone and peripheral nerves.


Subject(s)
Bone Diseases/physiopathology , Bone and Bones/innervation , Nerve Fibers/physiology , Peripheral Nerves/physiology , Signal Transduction/physiology , Humans , Mesenchymal Stem Cells/physiology
12.
Acta Biomater ; 125: 112-125, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33582360

ABSTRACT

Collagen membranes produced in vitro with different degrees of intrafibrillar mineralization are potentially useful for guided bone regeneration (GBR). However, highly-mineralized collagen membranes are brittle and difficult for clinical manipulation. The present study aimed at developing an intrafibrillar self-mineralization strategy for GBR membrane by covalently conjugating high-molecular weight polyacrylic acid (HPAA) on Bio-Gide® membranes (BG). The properties of the self-mineralizable membranes (HBG) and their potential to induce bone regeneration were investigated. The HBG underwent the progressive intrafibrillar mineralization as well as the increase in stiffness after immersed in supersaturated calcium phosphate solution, osteogenic medium, or after being implanted into a murine calvarial bone defect. The HBG promoted in-situ bone regeneration via stimulating osteogenic differentiation of mesenchymal stromal cells (MSCs). Hippo signaling was inhibited when MSCs were cultured on the self-mineralized HBG, and in HBG-promoted MSC osteogenesis during in-situ bone regeneration. This resulted in translocation of the transcription co-activators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) into the nucleus to induce transcription of genes promoting osteogenic differentiation of MSCs. Taken together, these findings indicated that HBG possessed the ability to self-mineralize in situ via intrafibrillar mineralization. The increase in stiffness of the extracellular matrix expedited in-situ bone regeneration by inactivating the Hippo-YAP/TAZ signaling cascade. STATEMENT OF SIGNIFICANCE: Guided bone regeneration (GBR) membranes made of naturally derived collagen have been widely used in the bone defect restoration. However, application of collagen GBR membranes run into the bottleneck with the challenges like insufficient stress strength, relatively poor dimensional stability and unsatisfactory osteoinductivity. This study develops a modified GBR membrane that can undergo progressive self-mineralization and matrix stiffening in situ. Increase in extracellular matrix stiffness provides the mechanical cues required for MSCs differentiation and expedites in-situ bone regeneration by inactivating the Hippo-YAP/TAZ signaling cascade.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Animals , Bone Regeneration , Cell Differentiation , Extracellular Matrix , Mice
13.
Acta Biomater ; 120: 213-223, 2021 01 15.
Article in English | MEDLINE | ID: mdl-32711082

ABSTRACT

Involvement of thermodynamically-stable prenucleation clusters (PNCs) in the biomineralization of collagen has been speculated since their existence was reported in mineralization systems. It has been hypothesized that intrafibrillar mineralization proceeds via nucleation of inhibitor-stabilized intermediates produced by liquid-liquid separation (aka. polymer-induced liquid precursors; PILPs). Here, the contribution of PNCs and PILPs to calcium phosphate intrafibrillar mineralization of collagen was examined in a model with a semipermeable membrane that excludes nucleation inhibitor-stabilized PILPs from reaching the collagen fibrils, using cryogenic electron microscopy of reconstituted fibrils and conventional transmission electron microscopy of collagen sponges. Molecular dynamics simulation with the Interface force field (IFF) was used to confirm the existence of PILPs with amorphous calcium phosphate and elucidate details of the dynamics. Furthermore, intrafibrillar mineralization of single collagen fibrils was experimentally observed with unstabilized PNCs when anionic/cationic polyelectrolytes were used to establish Donnan equilibrium across the semipermeable membrane. Molecular dynamics simulation verified PNC formation within the collagen intrafibrillar gap zones at the atomic scale and explained the role of external PILPs. The PILPs decrease the interfibrillar water content and increase the interfibrillar ionic concentration. Nevertheless, intrafibrillar mineralization of collagen sponges with PNCs alone was inefficacious, being constrained by competition from extrafibrillar mineral precipitation. STATEMENT OF SIGNIFICANCE: Compared with conventional PILP-based intrafibrillar mineralization, mineralization of collagen fibrils using unstabilized PNCs is constrained by competition from extrafibrillar mineral deposition. The narrow window of opportunity for PNCs to produce intrafibrillar mineralization provides a plausible explanation for the feasibility of nucleation inhibitor-free intrafibrillar apatite assembly during reconstitution of type I collagen.


Subject(s)
Calcium Phosphates , Collagen , Apatites , Extracellular Matrix , Polymers
14.
Adv Sci (Weinh) ; 7(8): 202000779, 2020 Apr.
Article in English | MEDLINE | ID: mdl-33224716

ABSTRACT

[This corrects the article DOI: 10.1002/advs.201901872.].

15.
Adv Mater ; 32(22): e1907833, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32270552

ABSTRACT

Microbe-mediated mineralization is ubiquitous in nature, involving bacteria, fungi, viruses, and algae. These mineralization processes comprise calcification, silicification, and iron mineralization. The mechanisms for mineral formation include extracellular and intracellular biomineralization. The mineral precipitating capability of microbes is often harnessed for green synthesis of metal nanoparticles, which are relatively less toxic compared with those synthesized through physical or chemical methods. Microbe-mediated mineralization has important applications ranging from pollutant removal and nonreactive carriers, to other industrial and biomedical applications. Herein, the different types of microbe-mediated biomineralization that occur in nature, their mechanisms, as well as their applications are elucidated to create a backdrop for future research.


Subject(s)
Bacteria/chemistry , Bacteria/metabolism , Fungi/chemistry , Metal Nanoparticles/chemistry , Minerals/chemistry , Viruses/chemistry , Biodegradation, Environmental , Biotechnology , Fungi/metabolism , Green Chemistry Technology , Iron/chemistry , Microbiological Phenomena , Viruses/metabolism
16.
Adv Sci (Weinh) ; 7(1): 1901872, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31921562

ABSTRACT

ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are among the most common opportunistic pathogens in nosocomial infections. ESKAPE pathogens distinguish themselves from normal ones by developing a high level of antibiotic resistance that involves multiple mechanisms. Contemporary therapeutic strategies which are potential options in combating ESKAPE bacteria need further investigation. Herein, a broad overview of the antimicrobial research on ESKAPE pathogens over the past five years is provided with prospective clinical applications.

17.
Trends Biotechnol ; 37(5): 464-491, 2019 05.
Article in English | MEDLINE | ID: mdl-30447877

ABSTRACT

Collagen is one of the most useful biopolymers because of its low immunogenicity and biocompatibility. The biomedical potential of natural collagen is limited by its poor mechanical strength, thermal stability, and enzyme resistance, but exogenous chemical, physical, or biological crosslinks have been used to modify the molecular structure of collagen to minimize degradation and enhance mechanical stability. Although crosslinked collagen-based materials have been widely used in biomedicine, there is no standard crosslinking protocol that can achieve a perfect balance between stability and functional remodeling of collagen. Understanding the role of crosslinking agents in the modification of collagen performance and their potential biomedical applications are crucial for developing novel collagen-based biopolymers for therapeutic gain.


Subject(s)
Biocompatible Materials , Collagen , Tissue Engineering/methods , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Biocompatible Materials/therapeutic use , Collagen/chemistry , Collagen/metabolism , Collagen/therapeutic use , Cross-Linking Reagents , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...