Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
J Org Chem ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959135

ABSTRACT

A photoredox-promoted decarboxylative C-H glycosylation for the synthesis of nonclassical heteroaryl C-glycosides is reported. This methodology is characterized by an exceedingly simple reaction system, high diastereoselectivity, and good functional group tolerance. Moreover, the operational procedure is simple, and the gram-scale reaction highlights the practical applicability of this protocol.

2.
Opt Lett ; 49(12): 3388-3391, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38875627

ABSTRACT

We demonstrate an invertible all-optical gate on chip, with the roles of control and signal switchable by slightly adjusting their relative arrival time at the gate. It is based on the quantum Zeno blockade (QZB) driven by sum-frequency generation (SFG) in a periodically poled lithium niobate microring resonator. For two nearly identical nanosecond pulses, the later arriving pulse is modulated by the earlier arriving one, resulting in 2.4 and 3.9 power extinction between the two, respectively, when their peak powers are 1 mW and 2 mW, respectively. Our results, while to be improved and enriched, herald a new, to the best of our knowledge, paradigm of logical gates and circuits for exotic applications.

3.
Opt Lett ; 49(9): 2449-2452, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691741

ABSTRACT

Broadband frequency comb generation through cascaded quadratic nonlinearity remains experimentally untapped in free-space cavities with bulk χ(2) materials mainly due to the high threshold power and restricted ability of dispersion engineering. Thin-film lithium niobate (LN) is a good platform for nonlinear optics due to the tight mode confinement in a nano-dimensional waveguide, the ease of dispersion engineering, large quadratic nonlinearities, and flexible phase matching via periodic poling. Here we demonstrate broadband frequency comb generation through dispersion engineering in a thin-film LN microresonator. Bandwidths of 150 nm (80 nm) and 25 nm (12 nm) for center wavelengths at 1560 and 780 nm are achieved, respectively, in a cavity-enhanced second-harmonic generation (doubly resonant optical parametric oscillator). Our demonstration paves the way for pure quadratic soliton generation, which is a great complement to dissipative Kerr soliton frequency combs for extended interesting nonlinear applications.

4.
Chem Commun (Camb) ; 60(45): 5860-5863, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38753015

ABSTRACT

A photoredox promoted decarboxylative C-H glycosylation has been developed for the synthesis of heteroaryl C-glycosides. This methodology is characterized by its exceedingly simple reaction system, high diastereoselectivity and good functional group tolerance. Moreover, this innovative approach circumvents the need for high temperatures, transition metals, and photocatalysts, providing an environmentally friendly, straightforward, and efficient protocol.

5.
Am J Infect Control ; 52(7): 827-833, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38281685

ABSTRACT

BACKGROUND: Patients with neurocritically illness are an under-recognized population at high risk of sepsis. We aimed to investigate the prevalence, early predictors, and outcomes of sepsis in neuro-ICU. METHODS: Daily and accumulative incidences of sepsis in neuro-ICU were explored. Demographics, medical history, baseline disease severity scores, and baseline biomarkers regarding inflammation, immunology, organ function, and nutritional status were collected and analyzed as potential predictors of sepsis. Logistic regression analyses were used to determine the independent predictors, and a nomogram was used to estimate the individual probability of sepsis in neuro-ICU. RESULTS: 153 patients were included in this study. Fifty-nine (38.6%) patients developed sepsis, and 21 (14%) patients developed septic shock. More than 86% of the septic cases occurred within the first week. Sequential organ failure assessment score ((relative risk) RR 1.334, P = .026), history of diabetes (RR 2.346, P = .049), and transferrin (RR 0.128, P = .042) on admission are independent predictors of sepsis. Septic patients had significantly higher mortality (P = .011), higher medical cost (P = .028), and a lower rate of functional independence (P = .010), compared to patients without sepsis. CONCLUSIONS: Sepsis afflicted more than one-third of neurocritically-ill patients and occurred mostly in the first week of admission. History of diabetes, serum transferrin, and sequential organ failure assessment score on admission were early predictors. Sepsis led to significantly worse outcomes and higher medical costs.


Subject(s)
Sepsis , Humans , Male , Sepsis/epidemiology , Sepsis/mortality , Sepsis/complications , Female , Middle Aged , Prospective Studies , Prevalence , Aged , Adult , Critical Illness , Risk Factors , Intensive Care Units , Nervous System Diseases/epidemiology , Nervous System Diseases/etiology , Prognosis
6.
J Sci Food Agric ; 104(3): 1824-1832, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37884460

ABSTRACT

BACKGROUND: Rice taste is closely associated with endosperm composition, which varies among different rice layers. Although clarifying the relationship between this difference and nutritional taste can guide rice breeding and cultivation practices, research on this topic is limited. RESULTS: Here, typical rice varieties having excellent and poor taste characteristics were selected to analyze the distribution characteristics and differences of their components. The varieties with excellent taste exhibited lower apparent amylose content (AAC) and protein content (PC), lesser short-chain (Fa) and long-chain (Fb3 ) amylopectin (AP) and more medium-chain (Fb1+2 ) AP, higher long-to-short chain ratio (Fa:Fb3 ), and higher nitrogen (N), magnesium (Mg) and calcium (Ca) content in layer 1 (L1) than the varieties with poor taste. Layer 2 (L2) played a key role in AAC and PC regulation in the varieties with excellent taste by reducing AAC and appropriately increasing PC, consequently improving rice taste. AP structure in layer 3 (L3) substantially affected the taste of the two types of varieties. The mineral content was the highest in L1, and increased potassium (K), Ca, and Mg content improved taste in all varieties. CONCLUSION: AAC in each layer contributes to rice taste. PC and minerals primarily act on L1 and L2, whereas AP acts on L2 and L3. Therefore, the endosperm formation process should be exploited for improving rice taste. Furthermore, key resources and cultivation should be identified and regulated, respectively, to improve rice taste. © 2023 Society of Chemical Industry.


Subject(s)
Oryza , Oryza/chemistry , Taste , Plant Breeding , Amylopectin/chemistry , Endosperm/chemistry , Amylose/analysis , Minerals/analysis , Magnesium/analysis , Starch/chemistry
7.
Neurol Sci ; 45(6): 2719-2728, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38150131

ABSTRACT

OBJECTIVES: Patients with severe stroke are at high risk of developing acute respiratory distress syndrome (ARDS), but this severe complication was often under-diagnosed and rarely explored in stroke patients. We aimed to investigate the prevalence, early predictors, and outcomes of ARDS in severe stroke. METHODS: This prospective study included consecutive patients admitted to neurological intensive care unit (neuro-ICU) with severe stroke, including acute ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage. The incidence of ARDS was examined, and baseline characteristics and severity scores on admission were investigated as potential early predictors for ARDS. The in-hospital mortality, length of neuro-ICU stay, the total cost in neuro-ICU, and neurological functions at 90 days were explored. RESULTS: Of 140 patients included, 35 (25.0%) developed ARDS. Over 90% of ARDS cases occurred within 1 week of admission. Procalcitonin (OR 1.310 95% CI 1.005-1.707, P = 0.046) and PaO2/FiO2 on admission (OR 0.986, 95% CI 0.979-0.993, P < 0.001) were independently associated with ARDS, and high brain natriuretic peptide (OR 0.994, 95% CI 0.989-0.998, P = 0.003) was a red flag biomarker warning that the respiratory symptoms may be caused by cardiac failure rather than ARDS. ARDS patients had longer stays and higher expenses in neuro-ICU. Among patients with ARDS, 25 (62.5%) were moderate or severe ARDS. All the patients with moderate to severe ARDS had an unfavorable outcome at 90 days. CONCLUSIONS: ARDS is common in patients with severe stroke, with most cases occurring in the first week of admission. Procalcitonin and PaO2/FiO2 on admission are early predictors of ARDS. ARDS worsens both short-term and long-term outcomes. The conflict in respiratory support strategies between ARDS and severe stroke needs to be further studied.


Subject(s)
Respiratory Distress Syndrome , Stroke , Humans , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/complications , Male , Female , Aged , Prospective Studies , Prevalence , Middle Aged , Stroke/epidemiology , Stroke/complications , Intensive Care Units/statistics & numerical data , Severity of Illness Index , Hospital Mortality , Aged, 80 and over , Length of Stay/statistics & numerical data
8.
Epilepsia ; 64(6): 1594-1604, 2023 06.
Article in English | MEDLINE | ID: mdl-36892496

ABSTRACT

OBJECTIVE: This study was undertaken to characterize the blood-brain barrier (BBB) dysfunction in patients with new onset refractory status epilepticus (NORSE) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS: This study included three groups of adult participants: patients with NORSE, encephalitis patients without status epilepticus (SE), and healthy subjects. These participants were retrospectively included from a prospective DCE-MRI database of neurocritically ill patients and healthy subjects. The BBB permeability (Ktrans) in the hippocampus, basal ganglia, thalamus, claustrum, periventricular white matter, and cerebellum were measured and compared between these three groups. RESULTS: A total of seven patients with NORSE, 14 encephalitis patients without SE, and nine healthy subjects were included in this study. Among seven patients with NORSE, only one had a definite etiology (autoimmune encephalitis), and the rest were cryptogenic. Etiology of encephalitis patients without SE included viral (n = 2), bacterial (n = 8), tuberculous (n = 1), cryptococcal (n = 1), and cryptic (n = 2) encephalitis. Of these 14 encephalitis patients without SE, three patients had seizures. Compared to healthy controls, NORSE patients had significantly increased Ktrans values in the hippocampus (.73 vs. .02 × 10-3 /min, p = .001) and basal ganglia (.61 vs. .003 × 10-3 /min, p = .007) and a trend in the thalamus (.24 vs. .08 × 10-3 /min, p = .017). Compared to encephalitis patients without SE, NORSE patients had significantly increased Ktrans values in the thalamus (.24 vs. .01 × 10-3 /min, p = .002) and basal ganglia (.61 vs. .004 × 10-3 /min, p = .013). SIGNIFICANCE: This exploratory study demonstrates that BBBs of NORSE patients were impaired diffusely, and BBB dysfunction in the basal ganglia and thalamus plays an important role in the pathophysiology of NORSE.


Subject(s)
Encephalitis , Status Epilepticus , Adult , Humans , Blood-Brain Barrier/diagnostic imaging , Retrospective Studies , Prospective Studies , Status Epilepticus/diagnostic imaging , Status Epilepticus/etiology , Encephalitis/complications , Magnetic Resonance Imaging
9.
Front Immunol ; 14: 1115031, 2023.
Article in English | MEDLINE | ID: mdl-36860868

ABSTRACT

Background: Inflammatory mechanisms play important roles in intracerebral hemorrhage (ICH) and have been linked to the development of stroke-associated pneumonia (SAP). The neutrophil-to-lymphocyte ratio (NLR), systemic immune-inflammation index (SII), platelet-to-lymphocyte ratio (PLR) and systemic inflammation response index (SIRI) are inflammatory indexes that influence systemic inflammatory responses after stroke. In this study, we aimed to compare the predictive value of the NLR, SII, SIRI and PLR for SAP in patients with ICH to determine their application potential in the early identification of the severity of pneumonia. Methods: Patients with ICH in four hospitals were prospectively enrolled. SAP was defined according to the modified Centers for Disease Control and Prevention criteria. Data on the NLR, SII, SIRI and PLR were collected at admission, and the correlation between these factors and the clinical pulmonary infection score (CPIS) was assessed through Spearman's analysis. Results: A total of 320 patients were enrolled in this study, among whom 126 (39.4%) developed SAP. The results of the receiver operating characteristic (ROC) analysis revealed that the NLR had the best predictive value for SAP (AUC: 0.748, 95% CI: 0.695-0.801), and this outcome remained significant after adjusting for other confounders in multivariable analysis (RR=1.090, 95% CI: 1.029-1.155). Among the four indexes, Spearman's analysis showed that the NLR was the most highly correlated with the CPIS (r=0.537, 95% CI: 0.395-0.654). The NLR could effectively predict ICU admission (AUC: 0.732, 95% CI: 0.671-0.786), and this finding remained significant in the multivariable analysis (RR=1.049, 95% CI: 1.009-1.089, P=0.036). Nomograms were created to predict the probability of SAP occurrence and ICU admission. Furthermore, the NLR could predict a good outcome at discharge (AUC: 0.761, 95% CI: 0.707-0.8147). Conclusions: Among the four indexes, the NLR was the best predictor for SAP occurrence and a poor outcome at discharge in ICH patients. It can therefore be used for the early identification of severe SAP and to predict ICU admission.


Subject(s)
Pneumonia , Stroke , United States , Humans , Neutrophils , Pneumonia/diagnosis , Inflammation , Cerebral Hemorrhage/diagnosis , Lymphocytes
10.
Materials (Basel) ; 16(6)2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36984150

ABSTRACT

Using ternary molten salt with a molar ratio of NaCl:KCl:CsCl = 30:24.5:45.5 and ZrCl4 as raw materials to prepare a NaCl-KCl-CsCl-Cs2ZrCl6 composite electrolyte. Characterizing by XRD, ICP-AES, optical microscopy and SEM-EDS, the results showed that when the molar ratio of CsCl:ZrCl4 ≥ 2:1, Cs2ZrCl6 was generated according to the stoichiometric reaction; when the molar ratio of CsCl:ZrCl4 < 2:1, CsCl in molten salt was almost completely converted to Cs2ZrCl6, and there was a ZrCl4 phase. When the molar ratio of CsCl:ZrCl4 = 2:1, with the increase of the reaction temperature and reaction time, the concentration of zirconium ions first increased and then decreased. The optimized preparation process conditions are: the 2:1 molar ratio of CsCl to ZrCl4 in NaCl-KCl-CsCl, 500 °C of reaction temperature of and 3 h of reaction time. Under this condition, 99.68% conversion rate from ZrCl4 to Cs2ZrCl6 was obtained. Taking the prepared NaCl-KCl-CsCl-Cs2ZrCl6 composite electrolyte as a raw material, a preliminary study of molten salt electrolytic refining zirconium was carried out, and a refined zirconium product with a dendrite of 10.61 mm was obtained under the conditions of a zirconium ions concentration of 5%, an electrolysis temperature of 750 °C, a current density of 0.1 A/cm2, and an electrolysis time of 9 h, indicating that the composite electrolyte can be used for the electrolytic refining of zirconium.

11.
Materials (Basel) ; 16(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36837102

ABSTRACT

Ni-20Cr-Eu2O3 composites were designed as new control rod materials and were synthesized from Ni, Cr, and Eu2O3 mixture powders via ball milling and vacuum hot pressing. During ball milling, Eu2O3 was fined, nano-crystallized, amorphized, and then dissolved into matrix. The effect of Eu2O3 content on the microstructure and mechanics was researched, and the corresponding mechanism was discussed. The relative densities, grain sizes, and microhardness increased when Eu2O3 content increased. According to the TEM observations, Eu2O3 particles showed a semi-coherent relationship with the matrix. The results of mechanical property testing showed that the ultimate tensile strength, yield strength, and elongation decreased with the Eu2O3 content increased. The maximum ultimate tensile strength, yield strength, and elongation were 741 MPa, 662 MPa, and 4%, respectively, with a 5 wt.% Eu2O3 addition. The experimental strengths were well matched with the theoretical values calculated by the strengthening mechanisms indicating that this method was highly effective for predicting the mechanical properties of Ni-20Cr-Eu2O3 composites.

12.
Bull Environ Contam Toxicol ; 109(5): 808-816, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36056950

ABSTRACT

Heavy metals pollution in pharmaceutical industries received increasing attention. A total of 94 soil samples were collected in this study. Results showed the mean contents of Hg, Cd, As, Pb, Ni and Cu were 0.21, 0.26, 9.59, 55.06, 51.52 and 50.81 mg·kg-1, respectively. The spatial distribution of metals in topsoil largely attributed to the pharmaceutical production process. The distribution of Hg and As were related to the production of medical absorbent cotton. While Ni was related to the fuel supply of Ni-rich coal. Cr, Cu and Pb mainly distributed in the process which they were used as catalysts. The vertical migration of metals was complex in soil. To a great extent, it was related to the texture of the soil and the properties of metals in this filed. The total non-cancer and cancer human health risk were within the limits of USEPA (10-6 a-1). This demonstrated the health risks of individual's exposure to heavy metals in this factory was acceptable.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Humans , Soil Pollutants/analysis , Lead , Environmental Monitoring/methods , Risk Assessment , Metals, Heavy/analysis , Soil , Pharmaceutical Preparations , China
13.
ACS Appl Mater Interfaces ; 14(39): 44429-44438, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36129436

ABSTRACT

Graphite can be successfully used as an anode for potassium-ion batteries (PIBs), while its conversion to KC8 leads to huge volume expansion, destruction of solid electrolyte interphase (SEI), and thus poor cycling stability. Incorporating additives into electrolytes is an economical and effective way to construct robust SEI for high-performance PIBs. Herein, we developed a series of sulfur-containing additives for PIB graphite anodes, and the impacts of their molecular structure and contents on the SEI are also systematically investigated. Compared with butylene sulfites and 1,3-propane sultone, the 1,3,2-dioxathiolane 2,2-dioxide (DTD) additive endows the graphite electrode (GE) with a higher reversible capacity, and better cycling stability in both the dilute potassium bis(fluorosulfonyl)imide (KFSI)- and potassium hexafluorophosphate (KPF6)-based carbonate electrolyte, as a result of a thinner and sulfate-enriched SEI. Moreover, the addition of a trace amount (0.2 wt %) DTD to the electrolyte can effectively protect the GE running over 800 cycles at 1 C. Excessive additives in the electrolyte will induce continuous SEI growth and render a rapid capacity fading of the GE. This strategy using the electrolyte additive paves the way for the design of novel PIB electrolytes and thus provides a great opportunity for commercial PIBs.

14.
Front Pharmacol ; 13: 899775, 2022.
Article in English | MEDLINE | ID: mdl-35571096

ABSTRACT

Atractylenolide-1 (AT-1), a natural active ingredient extracted from Atractylodes macrocephala, was reported to have good anti-fibrotic and anti-inflammatory effects. Osteogenic changes induced by the inflammation of valve interstitial cells (VICs) play a role in the development of calcified aortic valve disease (CAVD). This study aimed to investigate the anti-osteogenic effects of AT-1 in human VICs. Human VICs were exposed to osteogenic induction medium (OM) containing AT-1 to analyze cell viability, as well as protein and osteogenic gene expression. Anti-calcification tests were also performed. mRNA transcriptome sequencing was performed to identify differential genes and pathways regulated by AT-1. Western blotting was used to verify the enrichment pathway, protein-protein interaction (PPI) analysis was conducted to identify drug targets. Finally, molecular docking and inhibitors are used to verify the drug targets. Treatment of VICs with 20 µM AT-1 resulted in no significant cytotoxicity. The addition of AT-1 to OM prevented the accumulation of calcified nodules, and decreases in the level of (Alkaline Phosphatase) ALP and RUNX2 gene and protein expression were observed. Atractylenolide-1 can target FLT3 protein and inhibit the phosphorylation of FLT3, thereby blocking PI3K/AKT pathway activation, reducing the production of Hypoxia inducible factor(HIF)1-α, and inhibiting the osteogenic differentiation of VICs. These results suggest AT-1 as a potential drug for treating calcified aortic valve disease.

15.
Materials (Basel) ; 15(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35057265

ABSTRACT

Hydrogen permeation barrier plays an important role in reducing hydrogen loss from zirconium hydride matrix when used as neutron moderator. Here, a composite nitride film was prepared on zirconium hydride by in situ reaction method in nitrogen atmosphere. The phase structure, morphology, element distribution, and valence states of the composite film were investigated by XRD, SEM, AES, and XPS analysis. It was found that the composite nitride film was continuous and dense with about 1.6 µm thickness; the major phase of the film was ZrN, with coexistence of ZrO2, ZrO, and ZrN0.36H0.8; and Zr-C, Zr-O, Zr-N, O-H, and N-H bonds were detected in the film. The existence of ZrN0.36H0.8 phase and the bonds of O-H and N-H revealed that the nitrogen and oxygen in the film could capture hydrogen from the zirconium hydride matrix. The hydrogen permeation performance of nitride film was compared with oxide film by permeation reduction factor (PRF), vacuum thermal dehydrogenation (VTD), and hydrogen permeation rate (HPR) methods, and the results showed that the hydrogen permeation barrier effects of nitride film were better than that of oxide film. The zirconium nitride film would be a potential candidate for hydrogen permeation barrier on the surface of zirconium hydride.

16.
IEEE/ACM Trans Comput Biol Bioinform ; 19(3): 1285-1293, 2022.
Article in English | MEDLINE | ID: mdl-32750868

ABSTRACT

BACKGROUND: In medicine, karyotyping chromosomes is important for medical diagnostics, drug development, and biomedical research. Unfortunately, chromosome karyotyping is usually done by skilled cytologists manually, which requires experience, domain expertise, and considerable manual efforts. Therefore, automating the karyotyping process is a significant and meaningful task. METHOD: This paper focuses on chromosome classification because it is critical for chromosome karyotyping. In recent years, deep learning-based methods are the most promising methods for solving the tasks of chromosome classification. Although the deep learning-based Inception architecture has yielded state-of-the-art performance in the 2015 ILSVRC challenge, it has not been used in chromosome classification tasks so far. Therefore, we develop an automatic chromosome classification approach named CIR-Net based on Inception-ResNet which is an optimized version of Inception. However, the classification performance of origin Inception-ResNet on the insufficient chromosome dataset still has a lot of capacity for improvement. Further, we propose a simple but effective augmentation method called CDA for improving the performance of CIR-Net. RESULTS: The experimental results show that our proposed method achieves 95.98 percent classification accuracy on the clinical G-band chromosome dataset whose training dataset is insufficient. Moreover, the proposed augmentation method CDA improves more than 8.5 percent (from 87.46 to 95.98 percent) classification accuracy comparing to other methods. In this paper, the experimental results demonstrate that our proposed method is recent the most effective solution for solving clinical chromosome classification problems in chromosome auto-karyotyping on the condition of the insufficient training dataset. Code and Dataset are available at https://github.com/CloudDataLab/CIR-Net.


Subject(s)
Chromosomes, Human , Chromosomes, Human/genetics , Humans
17.
Materials (Basel) ; 16(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36614696

ABSTRACT

Nitride film as a hydrogen permeation barrier on zirconium hydride has seldom been studied. In this work, the zirconium nitride films were prepared on zirconium hydride in an atmosphere of N2 and N2 + H2 at 500~800 °C, with a holding time of 5 h and 20 h, and the mechanisms of film growth and hydrogen permeation were analyzed. The results showed that the film growth was mostly influenced by the temperature, followed by the reaction atmosphere and the holding time. The hydrogen could increase the nitrogen diffusivity during the formation of zirconium nitride films. The in situ nitriding conditions were optimized as 800 °C, N2 + H2 atmosphere, and 5~20 h. The chemical composition of ZrN-based films was mainly comprised of Zr and N, with a minor content of O. In addition, the film exhibited a major phase of ZrN, accompanied by the coexistence of ZrO2, ZrO, ZrN(NH2), and ZrN0.36H0.8, as well as O-H and N-H bonds based on the XPS analysis. The as-prepared ZrN base films in the present study exhibited superior hydrogen permeation resistance to other ZrO2 films previously reported. The hydrogen permeation resistance of the films could be attributed to the following mechanisms, including the chemical capture of hydrogen by the above-mentioned compounds and bonds; the physical barrier of continuous and dense film incurred from the volume effect of different compounds based on Pilling-Bedworth model and the different nitrogen diffusion coefficients at different temperatures.

18.
Med Image Anal ; 69: 101943, 2021 04.
Article in English | MEDLINE | ID: mdl-33388457

ABSTRACT

Chromosome karyotyping analysis plays a crucial role in prenatal diagnosis for diagnosing whether a fetus has severe defects or genetic diseases. However, due to the complicated morphological characteristics of various types of chromosome clusters, chromosome instance segmentation is the most challenging stage of chromosome karyotyping analysis, leading chromosome karyotyping analysis to highly dependent on skilled clinical analysts. Since most of the chromosome instance segmentation efforts are currently devoted to segmenting chromosome instances from different types of chromosome clusters, type identification of chromosome clusters is a vital anterior task for chromosome instance segmentation. Firstly, this paper proposes an automatic approach for chromosome cluster identification using recent transfer learning techniques. The proposed framework is based on ResNeXt weakly-supervised learning (WSL) pre-trained backbone and a task-specific network header. Secondly, this paper proposes a fast training methodology that tunes our framework from coarse-to-fine gradually. Extensive evaluations on a clinical dataset consisting of 6592 clinical chromosome samples show that the proposed framework achieves 94.09%accuracy, 92.79%sensitivity, and 98.03%specificity. Such performance is superior to the best baseline model that we obtain 92.17%accuracy, 89.1%sensitivity, and 97.42%specificity. To foster research and application in the chromosome cluster type identification, we make our clinical dataset and code available via GitHub.


Subject(s)
Chromosomes
19.
Opt Lett ; 45(13): 3789-3792, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630955

ABSTRACT

Thin-film lithium-niobate-on-insulator (LNOI) has emerged as a superior integrated-photonics platform for linear, nonlinear, and electro-optics. Here we combine quasi-phase-matching, dispersion engineering, and tight mode confinement to realize nonlinear parametric processes with both high efficiency and wide wavelength tunability. On a millimeter-long, Z-cut LNOI waveguide, we demonstrate efficient (1900±500%W-1cm-2) and highly tunable (-1.71nm/K) second-harmonic generation from 1530 to 1583 nm by type-0 quasi-phase-matching. Our technique is applicable to optical harmonic generation, quantum light sources, frequency conversion, and many other photonic information processes across visible to mid-IR spectral bands.

20.
Zhongguo Dang Dai Er Ke Za Zhi ; 22(6): 643-650, 2020 Jun.
Article in Chinese | MEDLINE | ID: mdl-32571466

ABSTRACT

OBJECTIVE: To study the association between maternal alcohol consumption and the risk of congenital heart disease (CHD) in offspring. METHODS: PubMed, Cochrane Library, Web of Science, Google Scholar, China Biology Medicine disc, Wanfang Database, CNKI Database, and Weipu Database were searched for the articles on the association between maternal alcohol consumption and congenital heart disease in offspring. These articles were published up to November 30, 2019. A random effects model or a fixed effects model was used for the pooled analysis of the results of each study, and then the pooled effective value and its 95%CI were calculated. A subgroup analysis was performed to explore heterogeneous regulators. Funnel plots and an Egger's test were used to assess publication bias. RESULTS: A total of 4 409 articles were searched, and 55 articles were finally included in this analysis, among which there were 6 cohort studies and 49 case-control studies. The Meta analysis showed heterogeneity across all studies (I2=74%, P<0.01). The random effects model showed that maternal alcohol consumption was associated with CHD in offspring, with an OR of 1.18 (95%CI: 1.09-1.28). The Egger's test showed a certain degree of publication bias (P<0.05), and after adjustment, the pooled OR of CHD in offspring was 1.10 (95%CI: 1.01-1.21). CONCLUSIONS: Maternal alcohol consumption may increase the risk of CHD in offspring.


Subject(s)
Alcohol Drinking , Heart Defects, Congenital , Case-Control Studies , China , Cohort Studies , Humans , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...