Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Arch Microbiol ; 206(7): 313, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900186

ABSTRACT

Phenols are highly toxic chemicals that are extensively used in industry and produce large amounts of emissions. Notably, phenols released into the soil are highly persistent, causing long-term harm to human health and the environment. In this study, a gram-positive, aerobic, and rod-shaped bacterial strain, Z13T, with efficient phenol degradation ability, was isolated from the soil of sugarcane fields. Based on the physiological properties and genomic features, strain Z13T is considered as a novel species of the genus Rhodococcus, for which the name Rhodococcus sacchari sp. nov. is proposed. The type strain is Z13T (= CCTCC AB 2022327T = JCM 35797T). This strain can use phenol as its sole carbon source. Z13T was able to completely degrade 1200 mg/L phenol within 20 h; the maximum specific growth rate was µmax = 0.93174 h-1, and the maximum specific degradation rate was qmax = 0.47405 h-1. Based on whole-genome sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, strain Z13T contains a series of phenol degradation genes, including dmpP, CatA, dmpB, pcaG, and pcaH, and can metabolize aromatic compounds. Moreover, the potential of strain Z13T for soil remediation was investigated by introducing Z13T into simulated phenol-contaminated soil, and the soil microbial diversity was analyzed. The results showed that 100% of the phenol in the soil was removed within 7.5 d. Furthermore, microbial diversity analysis revealed an increase in the relative species richness of Oceanobacillus, Chungangia, and Bacillus.


Subject(s)
Biodegradation, Environmental , Phenol , Phylogeny , RNA, Ribosomal, 16S , Rhodococcus , Soil Microbiology , Soil Pollutants , Rhodococcus/metabolism , Rhodococcus/genetics , Rhodococcus/classification , Rhodococcus/growth & development , Rhodococcus/isolation & purification , Soil Pollutants/metabolism , Phenol/metabolism , RNA, Ribosomal, 16S/genetics , Saccharum/metabolism , Saccharum/microbiology , Saccharum/growth & development , Soil/chemistry , Genome, Bacterial
2.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891899

ABSTRACT

In aquaculture, viral diseases pose a significant threat and can lead to substantial economic losses. The primary defense against viral invasion is the innate immune system, with interferons (IFNs) playing a crucial role in mediating the immune response. With advancements in molecular biology, the role of non-coding RNA (ncRNA), particularly microRNAs (miRNAs), in gene expression has gained increasing attention. While the function of miRNAs in regulating the host immune response has been extensively studied, research on their immunomodulatory effects in teleost fish, including silver carp (Hyphthalmichthys molitrix), is limited. Therefore, this research aimed to investigate the immunomodulatory role of microRNA-30b-5p (miR-30b-5p) in the antiviral immune response of silver carp (Hypophthalmichthys molitrix) by targeting cytokine receptor family B5 (CRFB5) via the JAK/STAT signaling pathway. In this study, silver carp were stimulated with polyinosinic-polycytidylic acid (poly (I:C)), resulting in the identification of an up-regulated miRNA (miR-30b-5p). Through a dual luciferase assay, it was demonstrated that CRFB5, a receptor shared by fish type I interferon, is a novel target of miR-30b-5p. Furthermore, it was found that miR-30b-5p can suppress post-transcriptional CRFB5 expression. Importantly, this study revealed for the first time that miR-30b-5p negatively regulates the JAK/STAT signaling pathway, thereby mediating the antiviral immune response in silver carp by targeting CRFB5 and maintaining immune system stability. These findings not only contribute to the understanding of how miRNAs act as negative feedback regulators in teleost fish antiviral immunity but also suggest their potential therapeutic measures to prevent an excessive immune response.


Subject(s)
Carps , Fish Proteins , Janus Kinases , MicroRNAs , Poly I-C , STAT Transcription Factors , Signal Transduction , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Carps/genetics , Carps/immunology , Carps/virology , Carps/metabolism , Poly I-C/pharmacology , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , STAT Transcription Factors/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Diseases/immunology , Fish Diseases/virology , Fish Diseases/genetics , Immunity, Innate/genetics , Gene Expression Regulation/drug effects
3.
Biodivers Data J ; 12: e127120, 2024.
Article in English | MEDLINE | ID: mdl-38912114

ABSTRACT

Background: Wuzhizhou Island (WZZ) is located in Haitang Bay in the northern region of Sanya, Hainan Island. The sea area surrounding WZZ represents a typical tropical marine ecosystem, characterised by diverse and complex habitats. Therefore, there is a rich variety of marine fish species at WZZ. The marine ecosystem of WZZ was seriously destroyed initially in the 1970s-1980s and recovered in the 1990s, then constructed as the first national tropical marine ranch demonstration area of China in 2019. As fish is an important high trophic vertebrate in the marine ecosystem, understanding the composition and distribution of fish species could help us to recognise the status of the ecosystem of WZZ and supply scientific data for construction of the national marine ranch demonstration area. This study used eDNA technology to investigate the composition of fish community surrounding WZZ and provided a scientific basis for realising and protecting the marine ecosystem of the South China Sea. New information: The WZZ is an offshore island in the South China Sea, harbouring abundant marine fish resources. Although previous research investigated fish species of WZZ, the data were, however, still incomplete due to limitation of sampling methods and survey seasons. In this study, we intended to take advantage of eDNA and supplement data of fish species at WZZ as much as possible. Based on eDNA, this study provided the data on 188 fish species (including nine undetermined species denoted by genus sp.) belonging to 17 orders, 63 families and 124 genera and they were the more comprehensive records of fish species surrounding WZZ. In addition, the information on Molecular Operational Taxonomic Units (MOTUs) for taxon identification was also provided, aiming to contribute to the establishment of a specific eDNA taxon database for fish of the South China Sea. This study included two datasets, which were occurrences of fish taxa at WZZ, as well as MOTUs sequences and geographical coordinate information of sampling sites. The "fish taxon occurrences" dataset presented records on taxonomic, distribution and habitat conditions of 188 fish species detected using eDNA, as well as the latitude and longitude information of the sampling sites, the "MOTUs information" dataset provided the MOTUs sequences, source of sequences, abundance of sequences for 188 fish species, also included the species matched in NCBI and the best NCBI BLAST sequence similarity.

4.
Biomolecules ; 14(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38927097

ABSTRACT

MicroRNAs (miRNAs) are highly conserved endogenous single-stranded non-coding RNA molecules that play a crucial role in regulating gene expression to maintain normal physiological functions in fish. Nevertheless, the specific physiological role of miRNAs in lower vertebrates, particularly in comparison to mammals, remains elusive. Additionally, the mechanisms underlying the control of antiviral responses triggered by viral stimulation in fish are still not fully understood. In this study, we investigated the regulatory impact of miR-1388 on the signaling pathway mediated by IFN regulatory factor 3 (IRF3). Our findings revealed that following stimulation with the viral analog poly(I:C), the expression of miR-1388 was significantly upregulated in primary immune tissues and macrophages. Through a dual luciferase reporter assay, we corroborated a direct targeting relationship between miR-1388 and tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3). Furthermore, our study demonstrated a distinct negative post-transcriptional correlation between miR-1388 and TRAF3. We observed a significant negative post-transcriptional regulatory association between miR-1388 and the levels of antiviral genes following poly(I:C) stimulation. Utilizing reporter plasmids, we elucidated the role of miR-1388 in the antiviral signaling pathway activated by TRAF3. By intervening with siRNA-TRAF3, we validated that miR-1388 regulates the expression of antiviral genes and the production of type I interferons (IFN-Is) through its interaction with TRAF3. Collectively, our experiments highlight the regulatory influence of miR-1388 on the IRF3-mediated signaling pathway by targeting TRAF3 post poly(I:C) stimulation. These findings provide compelling evidence for enhancing our understanding of the mechanisms through which fish miRNAs participate in immune responses.


Subject(s)
Carps , MicroRNAs , Poly I-C , TNF Receptor-Associated Factor 3 , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Poly I-C/pharmacology , Carps/genetics , Carps/metabolism , Carps/virology , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Down-Regulation/drug effects , Down-Regulation/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Gene Expression Regulation/drug effects , Fish Proteins/genetics , Fish Proteins/metabolism , Signal Transduction
5.
Toxics ; 12(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38922066

ABSTRACT

It is well known that Particulate Matter2.5 (PM2.5) has a major adverse effect on the organism. However, the health hazards of livestock farm PM2.5 to humans and animals are not yet known, and the role of miRNAs in the cellular damage induced by livestock farm PM2.5 is also unclear. Therefore, our study used cowshed PM2.5 to stimulate rat alveolar macrophage NR8383 to construct an in vitro injury model to investigate the effect of miR-122-5p on PM2.5-induced apoptosis in the NR8383. The level of apoptosis was quantified by flow cytometry and Hoechst 33342/PI double staining. Furthermore, the potential target gene Collagen type IV alpha (COL4A1) of miR-122-5p was identified through the use of bioinformatics methods. The results demonstrated a decline in cell viability and an increase in apoptosis with rising PM2.5 concentrations and exposure durations. The transfection of miR-122-5p mimics resulted in an upregulation of the pro-apoptotic protein Bcl-xL/Bcl-2 and activation of cleaved caspase-3 while inhibiting the anti-apoptotic protein B-cell lymphoma-2. The experimental data indicate that miR-122-5p is involved in the apoptotic process by targeting COL4A1. Furthermore, the overexpression of COL4A1 was observed to enhance the PM2.5-activated PI3K/AKT/NF-κB signaling pathway, which contributed to the inhibition of apoptosis. This finding offers a promising avenue for the development of therapeutic strategies aimed at mitigating cellular damage induced by PM2.5 exposure.

6.
Toxicol Appl Pharmacol ; 487: 116976, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777097

ABSTRACT

Staff and animals in livestock buildings are constantly exposed to fine particulate matter (PM2.5), which affects their respiratory health. However, its exact pathogenic mechanism remains unclear. Regulator of G-protein signaling 2 (RGS2) has been reported to play a regulatory role in pneumonia. The aim of this study was to explore the therapeutic potential of RGS2 in cowshed PM2.5-induced respiratory damage. PM2.5 was collected from a cattle farm, and the alveolar macrophages (NR8383) of the model animal rat were stimulated with different treatment conditions of cowshed PM2.5. The RGS2 overexpression vector was constructed and transfected it into cells. Compared with the control group, cowshed PM2.5 significantly induced a decrease in cell viability and increased the levels of apoptosis and proinflammatory factor expression. Overexpression of RGS2 ameliorated the above-mentioned cellular changes induced by cowshed PM2.5. In addition, PM2.5 has significantly induced intracellular Ca2+ dysregulation. Affinity inhibition of Gq/11 by RGS2 attenuated the cytosolic calcium signaling pathway mediated by PLCß/IP3R. To further investigate the causes and mechanisms of action of differential RGS2 expression, the possible effects of oxidative stress and TLR2/4 activation were investigated. The results have shown that RGS2 expression was not only regulated by oxidative stress-induced nitric oxide during cowshed PM2.5 cells stimulation but the activation of TLR2/4 had also an important inhibitory effect on its protein expression. The present study demonstrates the intracellular Ca2+ regulatory role of RGS2 during cellular injury, which could be a potential target for the prevention and treatment of PM2.5-induced respiratory injury.


Subject(s)
Macrophages, Alveolar , Particulate Matter , RGS Proteins , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Animals , RGS Proteins/genetics , RGS Proteins/metabolism , Particulate Matter/toxicity , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Rats , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Cattle , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Cell Line , Calcium Signaling/drug effects , Calcium/metabolism , Apoptosis/drug effects , Air Pollutants/toxicity
7.
Ecotoxicol Environ Saf ; 278: 116381, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38676963

ABSTRACT

Bioaerosols produced during animal production have potential adverse effects on the health of workers and animals. Our objective was to investigate characteristics, antibiotic-resistance genes (ARGs), and health risks of bioaerosols in various animal barns. Poultry and swine barns had high concentrations of airborne bacteria (11156 and 10917 CFU/m3, respectively). Acinetobacter, Clostridium sensu stricto, Corynebacterium, Pseudomonas, Psychrobacter, Streptococcus, and Staphylococcus were dominant pathogenic bacteria in animal barns, with Firmicutes being the most abundant bacterial phylum. Based on linear discriminant analysis effect size (LEfSe), there were more discriminative biomarkers in cattle barns than in poultry or swine barns, although the latter had the highest abundance of bacterial pathogens and high abundances of ARGs (including tetM, tetO, tetQ, tetW sul1, sul2, ermA, ermB) and intI1). Based on network analyses, there were higher co-occurrence patterns between bacteria and ARGs in bioaerosol from swine barns. Furthermore, in these barns, relative abundance of bacteria in bioaerosol samples was greatly affected by environmental factors, mainly temperature, relative humidity, and concentrations of CO2, NH3, and PM2.5. This study provided novel data regarding airborne bio-contaminants in animal enclosures and an impetus to improve management to reduce potential health impacts on humans and animals.


Subject(s)
Aerosols , Air Microbiology , Bacteria , Animals , Aerosols/analysis , Swine , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Cattle , Environmental Monitoring , Animal Husbandry , Poultry , Housing, Animal , Humans , Particulate Matter/analysis , Drug Resistance, Microbial/genetics , Air Pollution, Indoor/analysis
8.
Heliyon ; 10(8): e29205, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38638986

ABSTRACT

Spotted babylon were exposed to three different pH levels (7.0, 8.0 and 9.0) and four different concentrations of ammonia nitrogen (0.02, 1.02, 5.10 and 10.20 mg/L) in seawater to determine their acute toxicity and physiological responses to environmental fluctuation. The study evaluated four antioxidant enzymes: catalase (CAT), alkaline, superoxide dismutase (SOD), peroxidase (POD) and glutathione peroxidase (GSH-PX), and two immunoenzymes: acid phosphatase (ACP) and phosphatase (AKP). Over time, the immunoenzyme activity was significantly affected by pH and ammonia nitrogen concentration. After being exposed to pH and ammonia nitrogen, the spotted babylon showed signs of unresponsiveness to external stimuli, reduced vitality, slow movement, and an inability to maintain an upright position. Over time, the spotted babylon exhibited a trend of increasing and then decreasing GSH-PX, CAT, and SOD activities to adapt to the changing environment and enhance its immunity. On the contrary, the POD and ACP activities exhibited a decreasing trend initially, followed by an increasing trend over time and the AKP activity showed a gradual increase with time. The combined effect of pH and ammonia was found to be stronger than the effect of either factor alone. The interaction between pH and ammonia increased the activity of the spotted babylon antioxidant enzymes, induced oxidative stress, and reduced the ability of the spotted babylon's non-specific immune system to reverse it. Thus, the reverse-back of the spotted babylon was higher when pH and ammonia stress were dual than when pH or ammonia were single-factor stresses. The study results will establish a theoretical basis for analyzing the risk of multiple factors to the spotted babylon, and also enrich the basic information about the shellfish immune system.

9.
Toxicology ; 504: 153797, 2024 May.
Article in English | MEDLINE | ID: mdl-38583737

ABSTRACT

Particulate matter 2.5 (PM2.5) is a highly hazardous airborne particulate matter that poses a significant risk to humans and animals. Urban airborne particulate matter contributes to the increased incidence and mortality of respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), in humans. However, the specific mechanism by which PM2.5 affects animals in barn environments is yet to be elucidated. In this study, we investigated the effect of exposure to cow barn PM2.5 on rat alveolar macrophages (NR8383) and found that it induced apoptosis via the miR-212-5p/RASSF1 pathway. We found that lnc-Clic5 expression was downregulated in NR8383 cells exposed to cow barn PM2.5. Lnc-Clic5 plays a competitive endogenous RNA (ceRNA) regulatory role by sponging miR-212-5p to attenuate the regulation of RASSF1. Moreover, lnc-Clic5 overexpression inhibited NR8383 apoptosis by targeting the miR-212-5p/RASSF1 pathway. Co-treatment with miR-212-5p and lnc-Clic5 in the presence of cow barn PM2.5 revealed that lnc-Clic5 reversed NR8383 cell apoptosis induced by PM2.5 when miR-212-5p was overexpressed. These findings contribute to the study of ncRNAs and ceRNAs regulating PM2.5-induced apoptosis in animal farms, provide therapeutic targets for lung macrophage apoptosis, and may be useful for further evaluating the toxicological effects of PM2.5 in farmhouses on the respiratory systems of humans and animals.


Subject(s)
Apoptosis , Macrophages, Alveolar , MicroRNAs , Particulate Matter , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Apoptosis/drug effects , Rats , Particulate Matter/toxicity , Cattle , Cell Line , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Air Pollutants/toxicity
10.
Microbiol Res ; 283: 127693, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38490029

ABSTRACT

This study evaluated the effects of Bacillus subtilis BSXE-1601, applied either as dietary supplementation or water addition, on growth performance, immune responses, disease resistance of Penaeus vannamei, and microbiota in shrimp gut and rearing water. During the 42-day feeding experiment, shrimp were fed with basal diet (CO and BW group), basal diet supplemented with live strain BSXE-1601 at the dose of 1 × 109 CFU kg-1 feed (BD group) and 15 mg kg-1 florfenicol (FL group), and basal diet with strain BSXE-1601 added to water at the concentration of 1 × 107 CFU L-1 every five days (BW group). Results showed that dietary supplementation of strain BSXE-1601 significantly promoted growth performance of shrimp, both in the diet and water, enhanced disease resistance against Vibrio parahaemolyticus (P < 0.05). The BD and BW groups exhibited significant increases in acid phosphatase, alkaline phosphatase, lysozyme, peroxidase, superoxide dismutase activities, phenonoloxidase content in the serum of shrimp compared to the control (P < 0.05). Meanwhile, the expression of immune-related genes proPO, LZM, SOD, LGBP, HSP70, Imd, Toll, Relish, TOR, 4E-BP, eIF4E1α, eIF4E2 were significantly up-regulated compared to the control (P < 0.05). When added in rearing water, strain BSXE-1601 induced greater immune responses in shrimp than the dietary supplement (P < 0.05). Chao1 and Shannon indices of microbiota in rearing water were significantly lower in BD group than in the control. The microbiota in rearing water were significantly altered in BD, BW and FL groups compared to the control, while no significant impacts were observed on the microbiota of shrimp gut. When supplemented into the feed, strain BSXE-1601 obviously reduced the number of nodes, edges, modules in the ecological network of rearing water. The results suggested that dietary supplementation of BSXE-1601 could be more suitable than water addition in the practice of shrimp rearing when growth performance, non-specific immunity, disease resistance against V. parahaemolyticus in shrimp were collectively considered.


Subject(s)
Microbiota , Penaeidae , Animals , Disease Resistance , Bacillus subtilis , Immunity, Innate , Animal Feed/analysis , Dietary Supplements/analysis
11.
Animals (Basel) ; 14(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38396553

ABSTRACT

The NOTCH signaling pathway plays a pivotal role in diverse developmental processes, including cell proliferation and differentiation. In this study, we investigated whether this signaling molecules also contribute to avian adipogenesis. Using previous mRNA-seq datasets, we examined the expression of 11 signaling members during avian adipocyte differentiation. We found most members are down-regulated throughout differentiation (p < 0.05). As a representative, NOTCH1 was decreased in cultured chicken abdominal adipocytes during adipogenesis at mRNA and protein levels (p < 0.05). Moreover, using an overexpression plasmid for NOTCH1's intracellular domain (NICD1), as well as siRNA and DAPT to activate or deplete NOTCH1 in cells, we investigated the role of NOTCH1 in avian adipogenesis. Our findings illuminate that NOTCH1 activates the expression of HES1 and SOCS3 while it decreases NR2F2 and NUMB (p < 0.05), as well as inhibits oleic acid-induced adipocyte differentiation (p < 0.01). We further demonstrate that HES1, a downstream transcription factor activated by NOTCH1, also significantly inhibits adipogenesis by suppressing PPARγ and C/EBPα (p < 0.01). Collectively, these findings establish NOTCH1 as a negative regulator of avian adipocyte differentiation, unveiling NOTCH signaling as a potential target for regulating avian fat deposition.

12.
Biology (Basel) ; 13(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38392284

ABSTRACT

To study the effects of light color on sea urchin (Tripneustes gratilla), blue light (B, λ450nm), yellow light (Y, λ585-590nm), red light (R, λ640nm), green light (G, λ510nm), white light (W, λ400-780nm), and darkness (H) groups were established in a recirculating seawater aquaculture system. Six different LED light color treatment groups with a photoperiod of 12 L:12 D were tested for 30 days to investigate the effects of different light colors on the feeding, growth, and enzyme activities of T. gratilla (142.45 ± 4.36 g). We found that using different LED light colors caused significantly different impacts on the feeding, growth, and enzyme activity of T. gratilla. Notably, the sea urchins in group B exhibited better growth, with a weight gain rate of 39.26%, while those in group R demonstrated poorer growth, with a weight gain rate of only 26%. The feeding status differed significantly (p < 0.05) between groups B and R, with group B consuming the highest daily intake (6.03 ± 1.69 g) and group R consuming the lowest (4.54 ± 1.26 g). Throughout the three phases, there was no significant change in the viability of the α-amylase (p > 0.05). Conversely, the pepsin viability significantly increased (p < 0.05) in group B. The lipase viability consistently remained at the lowest level, with no notable differences between group W and group B. In group R, both the α-amylase and pepsin viabilities remained lower, whereas the lipase viability was noticeably greater in each phase than in group B (p < 0.05). Among the antioxidant enzymes, group R exhibited a trend of initial increase followed by decreases in catalase, superoxide dismutase, and glutathione peroxidase activities, particularly during the third stage (15-30 days), during which a significant decrease in antioxidant enzyme activity was observed (p < 0.05). Taken together, these findings suggest that blue light positively affects the growth, feeding, digestion, and antioxidant capacity of T. gratilla in comparison with those in other light environments, whereas red light had an inhibitory effect. Furthermore, T. gratilla is a benthic organism that lives on shallow sandy sea beds. Thus, as short wavelengths of blue and green light are more widely distributed on the seafloor, and long wavelengths of red light are more severely attenuated on the seafloor, shorter wavelengths of light promote the growth of bait organisms of sea urchins, which provide better habitats for T. gratilla.

13.
J Orthop Surg Res ; 19(1): 125, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321497

ABSTRACT

PURPOSE: The Systemic Immune-inflammatory Index (SII) and Geriatric Nutritional Risk Index (GNRI) have undergone comprehensive examination and validation in forecasting the outcomes of diverse medical conditions. Nevertheless, the correlation between the combined use of GNRI and SII metrics and hip fractures has yet to be elucidated. This study aimed to determine whether the amalgamation of SII and GNRI scores constitutes an independent prognostic factor for elderly patients with hip fractures. METHODS: We conducted a retrospective analysis of elderly patients admitted to our facility with hip fractures, encompassing both femoral neck and intertrochanteric fractures. Demographic information, experimental parameters, and postoperative complications were systematically recorded. The Geriatric Nutritional Risk Index (GNRI) and Systemic Immunoinflammatory Index (SII) were meticulously computed. Receiver operating characteristic (ROC) curves were generated, and optimal cutoff values for each parameter were determined. Subsequently, a multivariate Cox regression analysis was employed to assess the predictive utility of the SII-GNRI score in relation to 1-year postoperative mortality among elderly patients with hip fractures. RESULTS: In a study involving 597 patients, 90 of whom experienced mortality within 1 year, it was observed that the SII-GNRI score in the group of patients who passed away was significantly higher compared to the group that survived. Following a multifactorial adjustment, it was established that a high SII-GNRI score served as an independent predictor of 1-year all-cause mortality in older patients with hip fractures. In addition to the SII-GNRI score, factors such as length of hospital stay, CCI > 2, and blood transfusion were also identified as independent risk factors for survival. Notably, the incidence of postoperative complications in patients with high SII-GNRI scores was significantly greater than in patients with low scores. CONCLUSION: The SII-GNRI score proves valuable in predicting the 1-year survival rate for elderly patients with hip fractures who have undergone surgery.


Subject(s)
Hip Fractures , Nutritional Status , Humans , Aged , Retrospective Studies , Nutrition Assessment , Risk Factors , Postoperative Complications/epidemiology , Prognosis
14.
Oncol Lett ; 27(2): 55, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38192654

ABSTRACT

Small nucleolar RNA H/ACA Box 51 (SNORA51) is involved in progression of multiple cancers. However, its role in hepatocellular carcinoma (HCC) is still unclear. The aim of the present study was to analyze the expression of SNORA51 in HCC and its clinical significance. A total of 136 patients with HCC who underwent surgery from January 1, 2016 to December 31, 2018 were included. The expression of SNORA51 in cancer tissues and adjacent tissues was compared using reverse transcription-quantitative PCR and bioinformatics methods. Methylation of the SNORA51 promoter in cancer and adjacent tissues was compared using bioinformatics. The relationship between SNORA51 expression levels and clinicopathological characteristics of patients with HCC, in addition to prognosis, was analyzed. The expression of SNORA51 in HCC was significantly higher compared with that in adjacent tissues (P<0.05). starBase demonstrated that higher expression levels of SNORA51 were associated with a significantly worse prognosis of patients with HCC compared with those who had lower expression levels of SNORA51 (P<0.05). Bioinformatics analysis using The University of Alabama at Birmingham Cancer Data Analysis Portal demonstrated that methylation of the SNORA51 promoter region in HCC was significantly decreased compared with adjacent tissues (P<0.05). A high expression of SNORA51 was significantly associated with portal vein tumor thrombus, vascular invasion and TNM stage (P<0.05). The median survival time of patients with high SNORA51 expression was significantly lower compared with those who had low SNORA51 expression (P<0.05). Both uni- and multivariate Cox regression analysis demonstrated that SNORA51 expression was an independent risk factor that significantly worsened the prognosis of patients with HCC (P<0.05). The overexpression of SNORA51 in patients with HCC was significantly associated with a poor prognosis and may be related to the reduced methylation of the SNORA51 promoter region. Therefore, SNORA51 may be a promising biomarker for prediction of the prognosis of patients with HCC and may be a therapeutic target for the treatment of HCC in future.

15.
J Adv Res ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38043610

ABSTRACT

INTRODUCTION: Golden pompano (Trachinotus ovatus) is economically significant important for offshore cage aquaculture in China and Southeast Asian countries. Lack of high-quality genomic data and accurate gene annotations greatly restricts its genetic breeding progress. OBJECTIVES: To decode the mechanisms of sex determination and rapid growth in golden pompano and facilitate the sex- and growth-aimed genetic breeding. METHODS: Genome assemblies of male and female golden pompano were generated using Illumina, PacBio, BioNano, genetic maps and Hi-C sequencing data. Genomic comparisons, whole genome re-sequencing of 202 F1 individuals, QTL mapping and gonadal transcriptomes were used to analyze the sex determining region, sex chromosome evolution, SNP loci, and growth candidate genes. Zebrafish model was used to investigate the functions of growth candidate gene. RESULTS: Female (644.45 Mb) and male (652.12 Mb) genomes of golden pompano were assembled and annotated at the chromosome level. Both genomes are highly conserved and no new or highly differentiated sex chromosomes occur. A 3.5 Mb sex determining region on LG15 was identified, where Hsd17b1, Micall2 and Lmx1a were putative candidates for sex determination. Three SNP loci significantly linked to growth were pinpointed, and a growth-linked gene gpsstr1 was identified by locus BSNP1369 (G â†’ C, 17489695, Chr23). Loss of sstr1a (homologue of gpsstr1) in zebrafish caused growth retardation. CONCLUSION: This study provides insights into sex chromosome evolution, sex determination and rapid growth of golden pompano.

16.
Article in English | MEDLINE | ID: mdl-38058277

ABSTRACT

OBJECTIVE: Hypocalcemia occurs commonly among patients with acute pancreatitis (AP) in the intensive care unit (ICU). Calcium therapy could be used to correct hypocalcemia and maintain calcium levels, but its impact on the prognosis has not been demonstrated. Our study aimed to determine whether calcium therapy could benefit the multiple outcomes of AP patients with hypocalcemia. METHODS: We extracted 807 AP patients with hypocalcemia from the Beth Israel Deaconess Medical Center (MIMIC-IV) database and performed retrospective analyses. The outcomes were in-hospital, 28 days, ICU mortality, and the length of stay (LOS) in the hospital and ICU. We performed propensity matching (PSM) and inverse probability weighting (IPTW) to balance the baseline differences and conducted multivariate regression to investigate the impact of calcium therapy. RESULTS: A total of 620 patients (76.8%) received calcium treatment (calcium group) during hospitalization, while 187 patients (non-calcium group) did not. Patients in the calcium group did not present significant survival differences between groups before and after matching. After including covariates, calcium administration had no association with patients' in-hospital (HR: 1.03, 95% Cl: 0.47-2.27, p = .942), 28 days and ICU mortality and was significantly associated with prolonged length of stay in the hospital (effect estimate: 6.18, 95% Cl: 3.27-9.09, p < .001) and ICU (effect estimate: 1.72, 95% Cl: 0.24-3.20, p < .001). Calcium therapy could not benefit patients in subgroups with exclusive parenteral infusion, early calcium therapy (<48 h), or various degrees of hypocalcemia. CONCLUSION: AP patients with hypocalcemia could not benefit from calcium administration, which has no association with multiple mortality and is significantly associated with prolonged LOS in the hospital and ICU.

17.
Toxics ; 11(12)2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38133382

ABSTRACT

Objective: To investigate the role of miR-212-5p-targeted ARAF during the apoptosis of rat alveolar macrophages induced by cowshed PM2.5. Methods: miRNA and related target genes and pathways were predicted using the KEGG, TargetScan, and other prediction websites. NR8383 macrophages were treated with cowshed PM2.5 to establish an in vitro lung injury model in rats; meanwhile, for the assessment of cell viability, apoptosis, intracellular calcium ions, and mitochondrial membrane potential in NR8383 cells, RT-qPCR was used to detect the expression of miR-212-5p and the target gene ARAF. Results: The bioinformatic analyses showed that miR-212-5p and ARAF were involved in PM2.5-associated cellular damage. Exposure to different concentrations (0 µg/mL, 60 µg/mL, 180 µg/mL, 300 µg/mL) with different durations (0 h, 12 h, 24 h, 48 h) of cowshed PM2.5 resulted in apoptosis, increased intracellular calcium ions, and decreased mitochondrial membrane potential. The miR-212-5p mimic group showed an up-regulation of Bax and cleaved Caspase 3 expression but decreased Bcl2 expression compared to the NC group, and overexpression of ARAF up-regulated the expression of p-MEK1/2 and p-ERK1/2 and simultaneously reversed the above phenomena. Conclusions: miR-212-5p targets ARAF to affect the cowshed PM2.5-induced apoptosis through the MEK/ERK signaling pathway, providing a potential target for relevant farming industry and pathology studies.

18.
Animals (Basel) ; 13(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38003072

ABSTRACT

This study investigates the effect of a sudden change in salinity for 48 h on the digestive enzyme activity of juvenile yellowfin tuna. The treatment included a control salinity of 32‱ in natural seawater and an experimental salinity of 29‱. Acute stress experiments were carried out on 72 juvenile yellowfin tuna (646.52 ± 66.32 g) for 48 h to determine changes in digestive enzyme activity in different intestinal sections over time (0 h, 12 h, 24 h, 48 h). The activities of pepsin, trypsin, α-amylase, lipase, and chymotrypsin in the digestive organs (stomach, foregut, and pyloric ceca) of juvenile yellowfin tuna were measured. Pepsin and pancreatic protease in the experimental group were significantly lower than in the control group (p < 0.05). α-amylase showed a fluctuating trend of decreasing and then increasing, and its activity trend was pyloric ceca > foregut > stomach. The lipase activity of gastric tissues decreased at the beginning and then increased, reaching a minimum at 24 h (2.74 ± 1.99 U·g protein-1). The change of lipase in the pyloric ceca and foregut was increasing and then decreasing. The lipase activity trend was pyloric ceca > foregut > stomach. The chymotrypsin showed a decreasing and increasing trend and then stabilized at 48 h with a pattern of pyloric ceca > foregut > stomach. Similarly, the gut villi morphology was not significantly altered in the acutely salinity-stressed compared to the non-salinity-stressed. This study suggests that salinity may change the digestive function of juvenile yellowfin tuna, thereby affecting fish feeding, growth, and development. On the contrary, yellowfin tuna is highly adapted to 29‱ salinity. However, excessive stress may negatively affect digestive enzyme activity and reduce fish digestibility. This study may provide a scientific basis for a coastal aquaculture water environment for yellowfin tuna farming, which may guide the development and cultivation of aquaculture.

19.
Sensors (Basel) ; 23(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37960523

ABSTRACT

Aiming at the problem of the low cooperative positioning accuracy and robustness of multi-UAV formation, a cooperative positioning method of a multi-UAV based on an adaptive fault-tolerant federated filter is proposed. Combined with the position of the follower UAV and leader UAV, and the relative range between them, a cooperative positioning model of the follower UAV is established. On this basis, an adaptive fault-tolerant federated filter is designed. Fault detection and isolation technology are added to improve the positioning accuracy of the follower UAV and the fault tolerance performance of the filter. Meanwhile, the measurement noise matrix is adjusted by the adaptive information allocation coefficient to reduce the impact of undetected fault information on the sub-filter and global estimation accuracy. The simulation results show that the adaptive fault-tolerant federated algorithm can greatly improve the positioning accuracy, which is 83.4% higher than that of the absolute positioning accuracy of a single UAV. In the case of a gradual fault, the method has a stronger fault-tolerant performance and reconstruction performance.

20.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37982805

ABSTRACT

Probiotics, as a widely used additive, have played a unique advantage in replacing antibiotic products. As a result, the probiotic effects on broiler development, intestinal flora, intestinal barrier, and immunity were assessed by this investigation. Four hundred and eighty 1-day-old Arbor Acres broilers were randomly allotted to 4 groups of 5 replicates with 24 broilers each. The control was fed only a basal corn-soybean meal diet. Probiotics I, probiotics II, and probiotics III were fed basal diet and 1, 5, and 10 g/kg compound probiotics (Lactobacillus casei: Lactobacillus acidophilus: Bifidobacterium = 1:1:2), respectively. We found that broilers in the compound probiotic group exhibited better growth performance and carcass characteristics compared with control, especially among probiotics III group. The intestinal barrier-related genes relative expression of Claudin, Occludin, MUC2, and ZO-1 mRNA in the probiotic group increased at 21 and 42 d compared with control, especially among probiotics III group (P < 0.05). The early gut immune-related genes (TLR2, TLR4, IL-1ß, and IL-2) mRNA increased compared with control, while the trend at 42 d was completely opposite to that in the earlier stage (P < 0.05). Among them, probiotics III group showed the most significant changes compared to probiotics II group and probiotics I group. Select probiotics III group and control group for 16S rDNA amplicon sequencing analysis. The 16S rDNA amplicon sequencing results demonstrated that probiotics increased the relative abundance of beneficial microbes such as o_Bacteroidales, f_Rikenellaceae, and g_Alistipes and improved the cecum's gut microbiota of 42-day-old broilers. Additionally, adding the probiotics decreased the relative abundance of harmful microbes such as Proteobacteria. PICRUSt2 functional analysis revealed that most proteins were enriched in DNA replication, transcription, and glycolysis processes. Therefore, this study can provide theoretical reference value for probiotics to improve production performance, improve intestinal barrier, immunity, intestinal flora of broilers, and the application of probiotics.


Probiotics, as a green and pollution-free feed additive, can improve the production performance and economic benefits of broilers. Previous studies have found that the effect of multi-strain assistance is superior to that of a single strain. Therefore, to conduct our research, we added 1, 5, and 10 g/kg compound probiotics (Lactobacillus casei:Lactobacillus acidophilus:Bifidobacterium = 1:1:2) to the diet. The density of viable probiotics was 1 × 1010 CFU/g. We have found that adding 10 g/kg compound probiotics has better effects on production performance, intestinal immunity, and intestinal barrier function compared with adding 1 and 5 g/kg compound probiotics. Further sequencing analysis of gut microbiota revealed that by influencing the community structure and function of the cecum's microbiota, compound probiotics can enhance the intestinal barrier and immune performance of broilers, which in turn improves their growth performance and carcass attributes.


Subject(s)
Gastrointestinal Microbiome , Probiotics , Animals , Animal Feed/analysis , Chickens , Diet/veterinary , DNA, Ribosomal , Probiotics/pharmacology , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL
...