Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Microbiol Spectr ; : e0046524, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700327

ABSTRACT

Smallpox is a highly contagious human disease caused by the variola virus. Although the disease was eliminated in 1979 due to its highly contagious nature and historical pathogenicity, with a mortality rate of up to 30%, this virus is an important candidate for biological weapons. Currently, vaccines are the critical measures to prevent this virus infection and spread. In this study, we designed a peptide vaccine using immunoinformatics tools, which have the potential to activate human immunity against variola virus infection efficiently. The design of peptides derives from vaccine-candidate proteins showing protective potential in vaccinia WR strains. Potential non-toxic and nonallergenic T-cell and B-cell binding and cytokine-inducing epitopes were then screened through a priority prediction using special linkers to connect B-cell epitopes and T-cell epitopes, and an appropriate adjuvant was added to the vaccine construction to enhance the immunogenicity of the peptide vaccine. The 3D structure display, docking, and free energy calculation analysis indicate that the binding affinity between the vaccine peptide and Toll-like receptor 3 is high, and the vaccine receptor complex is highly stable. Notably, the vaccine we designed is obtained from the protective protein of the vaccinia and combined with preventive measures to avoid side effects. This vaccine is highly likely to produce an effective and safe immune response against the variola virus infection in the body. IMPORTANCE: In this work, we designed a vaccine with a cluster of multiple T-cell/B-cell epitopes, which should be effective in inducing systematic immune responses against variola virus infection. Besides, this work also provides a reference in vaccine design for preventing monkeypox virus infection, which is currently prevalent.

2.
Cell Commun Signal ; 22(1): 295, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802814

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) commonly exhibits tolerance to cisplatin treatment, but the underlying mechanisms remain unclear. Within the tumor microenvironment, macrophages play a role in resisting the cytotoxic effects of chemotherapy by engaging in efferocytosis to clear apoptotic cells induced by chemotherapeutic agents. The involvement of extracellular vesicles (EVs), an intercellular communicator within the tumor microenvironment, in regulating the efferocytosis for the promotion of drug resistance has not been thoroughly investigated. METHODS: We constructed GFP fluorescent-expressing CRC cell lines (including GFP-CT26 and GFP-MC38) to detect macrophage efferocytosis through flow cytometric analysis. We isolated and purified CRC-secreted EVs using a multi-step ultracentrifugation method and identified them through electron microscopy and nanoflow cytometry. Proteomic analysis was conducted to identify the protein molecules carried by CRC-EVs. MFGE8 knockout CRC cell lines were constructed using CRISPR-Cas9, and their effects were validated through in vitro and in vivo experiments using Western blotting, immunofluorescence, and flow cytometric analysis, confirming that these EVs activate the macrophage αvß3-Src-FAK-STAT3 signaling pathway, thereby promoting efferocytosis. RESULTS: In this study, we found that CRC-derived EVs (CRC-EVs) enhanced macrophage efferocytosis of cisplatin-induced apoptotic CRC cells. Analysis of The Cancer Genome Atlas (TCGA) database revealed a high expression of the efferocytosis-associated gene MFGE8 in CRC patients, suggesting a poorer prognosis. Additionally, mass spectrometry-based proteomic analysis identified a high abundance of MFGE8 protein in CRC-EVs. Utilizing CRISPR-Cas9 gene edition system, we generated MFGE8-knockout CRC cells, demonstrating that their EVs fail to upregulate macrophage efferocytosis in vitro and in vivo. Furthermore, we demonstrated that MFGE8 in CRC-EVs stimulated macrophage efferocytosis by increasing the expression of αvß3 on the cell surface, thereby activating the intracellular Src-FAK-STAT3 signaling pathway. CONCLUSIONS: Therefore, this study highlighted a mechanism in CRC-EVs carrying MFGE8 activated the macrophage efferocytosis. This activation promoted the clearance of cisplatin-induced apoptotic CRC cells, contributing to CRC resistance against cisplatin. These findings provide novel insights into the potential synergistic application of chemotherapy drugs, EVs inhibitors, and efferocytosis antagonists for CRC treatment.


Subject(s)
Colorectal Neoplasms , Extracellular Vesicles , Macrophages , Phagocytosis , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Macrophages/metabolism , Humans , Animals , Cell Line, Tumor , Mice , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Signal Transduction , Cisplatin/pharmacology , Integrin alphaVbeta3/metabolism , Integrin alphaVbeta3/genetics , Efferocytosis
3.
Appl Microbiol Biotechnol ; 108(1): 290, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587616

ABSTRACT

For the development of a competitive ELISA (cELISA) to detect serum antibodies against the Mycoplasma mycoides subsp. Mycoides (Mmm) (strain PG1), the causative agent of contagious bovine pleuropneumonia (CBPP), all the proteins of this pathogen were analyzed. Then, a specific extracellular region of a transmembrane protein with the potential for diagnosis was identified. After that, a monoclonal antibody (Mab) named 3A8 was obtained using this extracellular region as an immunogen. Finally, a cELISA was established with the extracellular domain of this transmembrane protein as the coating antigen, Mab 3A8 as the competitive antibody, and HRP-labeled goat anti-mouse IgG as the enzyme-labeled antibody. This established method was used to detect the antibody dynamic regularity of goats which are artificially immunized Mmm and was also compared with a commercial ELISA kit. Further, the sera of 1011 different cattle from border provinces of China were monitored using a candidate Mab 3A8 cELISA. The detection results of known background sera used in this study indicate that a candidate diagnostic marker was successfully identified by analyzing all the coding proteins of Mmm in this research, and the cELISA established based on the Mab 3A8 against this protein can detect CBPP-positive serum with specificity and has no cross-reaction with other related epidemic disease-positive sera. In addition, we tested the sera collected from the border areas of China using the established ELISA, and no positive sample was detected. The research protocol of the CBPP cELISA established in this study is different from the traditional method, which can greatly reduce the investment of manpower and capital and save development time. We believe that this study's protocol could serve as a reference for the development of detection methods for mycoplasma and other complex pathogens. KEY POINTS: • A Mmm-specific diagnostic marker was obtained based on protein characteristics. • A cELISA was established for CBPP serum antibody detection. • The serological investigation was conducted for CBPP in the border areas of China.


Subject(s)
Antibodies, Monoclonal , Pleuropneumonia , Animals , Cattle , Membrane Proteins , China , Enzyme-Linked Immunosorbent Assay , Goats
4.
J Cancer ; 15(8): 2424-2430, 2024.
Article in English | MEDLINE | ID: mdl-38495482

ABSTRACT

Cofilin (CFL1) is one critical member of the actin deploy family (ADF). Overexpression of CFL1 is associated with aggressive features and poor prognosis in malignancies. We evaluated the expression of CFL1 in patients with chronic myeloid leukemia in the chronic phase (CML-CP), acute myelocytic leukemia (AML) and healthy controls. The role of CFL1 in imatinib therapy was also investigated using cell line. We found that the expression of CFL1 was lower in CML patients than that in healthy controls, and was significantly upregulated after imatinib therapy (p<0.05). CML patients with lower CFL1 achieved higher Major molecular response (MMR) rate after 6 months of imatinib therapy (p<0.05). Cofilin, P-cofilin and F-actin, especially branched F-actin were all upregulated after imatinib therapy. The lower CFL1 expression before treatment may predicts a better response to imatinib. Imatinib affects F-actin remodeling in CML patients by regulating CFL1 expression and activity.

5.
Small ; : e2306389, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168513

ABSTRACT

In view of the increased levels of reactive oxygen species (ROS) that disturb the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), the repair of diabetic bone defects remains a great challenge. Herein, a factor-free hydrogel is reported with ROS scavenging and responsive degradation properties for enhanced diabetic bone healing. These hydrogels contain ROS-cleavable thioketal (TK) linkers and ultraviolet (UV)-responsive norbornene (NB) groups conjugated with 8-arm PEG macromers, which are formed via UV crosslinking-mediated gelation. Upon reacting with high levels of ROS in the bone defect microenvironment, ROS-cleavable TK linkers are destroyed, allowing the responsive degradation of hydrogels, which promotes the migration of BMSCs. Moreover, ROS levels are reduced through hydrogel-mediated ROS scavenging to reverse BMSC differentiation from adipogenic to osteogenic phenotype. As such, a favorable microenvironment is created after simultaneous ROS scavenging and hydrogel degradation, leading to the effective repair of bone defects in diabetic mouse models, even without the addition of growth factors. Thus, this study presents a responsive hydrogel platform that regulates ROS scavenging and stromal degradation in bone engineering.

6.
iScience ; 27(1): 108545, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38213621

ABSTRACT

Stem cells are heterogeneous to generate diverse differentiated cell types required for organogenesis; however, the underlying mechanisms that differently maintain these heterogeneous stem cells are not well understood. In this study, we identify that Golgi-to-endoplasmic reticulum (ER) retrograde transport specifically maintains type II neuroblasts (NBs) through the Notch signaling. We reveal that intermediate neural progenitors (INPs), immediate daughter cells of type II NBs, provide Delta and function as the NB niche. The Delta used by INPs is mainly produced by NBs and asymmetrically distributed to INPs. Blocking retrograde transport leads to a decrease in INP number, which reduces Notch activity and results in the premature differentiation of type II NBs. Furthermore, the reduction of Delta could suppress tumor formation caused by type II NBs. Our results highlight the crosstalk between Golgi-to-ER retrograde transport, Notch signaling, stem cell niche, and fusion as an essential step in maintaining the self-renewal of type II NB lineage.

7.
Mater Horiz ; 11(6): 1465-1483, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38221872

ABSTRACT

Osteoarthritis (OA) is a common joint disease known for cartilage degeneration, leading to a substantial burden on individuals and society due to its high disability rate. However, current clinical treatments for cartilage defects remain unsatisfactory due to the unclear mechanisms underlying cartilage regeneration. Tissue engineering hydrogels have emerged as an attractive approach in cartilage repair. Recent research studies have indicated that stem cells can sense the mechanical strength of hydrogels, thereby regulating their differentiation fate. In this study, we present the groundbreaking construction of dual-network DNA-silk fibroin (SF) hydrogels with controllable surface rigidity. The supramolecular networks, formed through DNA base-pairing, induce the development of ß-sheet structures by constraining and aggregating SF molecules. Subsequently, SF was cross-linked via horseradish peroxidase (HRP)-mediated enzyme reactions to form the second network. Experimental results demonstrated a positive correlation between the surface rigidity of dual-network DNA-SF hydrogels and the DNA content. Interestingly, it was observed that dual-network DNA-SF hydrogels with moderate surface rigidity exhibited the highest effectiveness in facilitating the migration of bone marrow mesenchymal stem cells (BMSCs) and their chondrogenic differentiation. Transcriptome sequencing further confirmed that dual-network DNA-SF hydrogels primarily enhanced chondrogenic differentiation of BMSCs by upregulating the Wnt and TGF-ß signaling pathways while accelerating collagen II synthesis. Furthermore, in vivo studies revealed that dual-network DNA-SF hydrogels with moderate surface rigidity significantly accelerated cartilage regeneration. In summary, the dual-network DNA-SF hydrogels represent a promising and novel therapeutic strategy for cartilage regeneration.


Subject(s)
Cartilage Diseases , Fibroins , Humans , Fibroins/chemistry , Hydrogels , Cartilage/physiology , Tissue Engineering/methods , Cell Differentiation/genetics
8.
Bioorg Med Chem Lett ; 97: 129542, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37939861

ABSTRACT

Proprotein convertase subtilisin kexin type 9 (PCSK9) is a clinically validated target on the treatment of cardiovascular disease (CVD). PCSK9 can regulate the hepatocyte surface low density lipoprotein receptor (LDLR) level by binding to LDLR and leading to their degradation in the lysosome. The clinical use of two monoclonal antibodies (alirocumab and evolocumab, approved in 2015) and one small interfering RNA (inclisiran, approved in 2020) which can inhibit PCSK9 function proved that they are very effective in lowering low density lipoprotein cholesterol (LDL-C). However, the high treatment costs and parenteral administration of these drugs prohibited widespread use and reduced their long-term advantage. Comparatively, small molecule drugs have many incomparable advantages of macromolecules, such as lower treatment cost, more drug administration options, superior pharmacokinetic properties, less adverse immunogenic responses and better affordable production. In this paper, we identified a series of benzothiazoles small molecule PCSK9 inhibitors through extensive screening. The structure and activity relationship (SAR) was summarized to facilitate further optimization. Moreover, the primary mechanism of action of the most potent compound was also investigated.


Subject(s)
Anticholesteremic Agents , Benzothiazoles , PCSK9 Inhibitors , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Anticholesteremic Agents/therapeutic use , Cholesterol, LDL , Proprotein Convertase 9/metabolism , Benzothiazoles/chemistry , Benzothiazoles/pharmacology
9.
Aging (Albany NY) ; 15(22): 13486-13503, 2023 11 29.
Article in English | MEDLINE | ID: mdl-38032290

ABSTRACT

Ferroptosis induction through the suppression of glutathione peroxidase 4 (GPX4) and apoptosis-inducing factor mitochondria-associated 2 (AIFM2) has proven to be an effective approach in eliminating chemotherapy-resistant cells of various types. However, a comprehensive understanding of the roles of GPX4 and AIFM2 in acute myeloid leukemia (AML) has not yet been achieved. Using cBioPortal, DepMap, GEPIA, Metascape, and ONCOMINE, we compared the transcriptional expression, survival data, gene mutation, methylation, and network analyses of GPX4- and AIFM2-associated signaling pathways in AML. The results revealed that high expression levels of GPX4 and AIFM2 are associated with an adverse prognosis for AML patients. Overexpression of AIFM2 correlated with elevated mutation frequencies in NPM1 and DNMT3A. GPX4 upregulation modulated the following pathways: GO:0045333, cellular respiration; R-HSA-5389840, mitochondrial translation elongation; GO:0009060, aerobic respiration; R-HSA-9609507, protein localization; and R-HSA-8953854, metabolism of RNA. On the other hand, the overexpression of AIFM2 influenced the following processes: GO:0048704, embryonic skeletal system morphogenesis; GO:0021546, rhombomere development; GO:0009954, proximal/distal pattern formation; and GO:0048732, gland development. This study identifies the high expression of GPX4 and AIFM2 as novel biomarkers predicting a poor prognosis for AML patients. Furthermore, ferroptosis induction may improve the stratified treatment of AML.


Subject(s)
Ferroptosis , Leukemia, Myeloid, Acute , Humans , Ferroptosis/genetics , Leukemia, Myeloid, Acute/genetics , Prognosis , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Mutation
10.
Materials (Basel) ; 16(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37444892

ABSTRACT

Acoustic black holes (ABHs) are effective at suppressing vibrations at high frequencies, but their performance at low frequencies is limited. This paper aims to improve the low-frequency performance of ABH plates through the design of a metamaterial acoustic black hole (MMABH) plate. The MMABH plate consists of a double-layer ABH plate with a set of periodic local resonators installed between the layers. The resonators are tuned to the low-frequency peak points of the ABH plate, which are identified using finite element analysis. To dissipate vibration energy, the beams of the resonators are covered with damping layers. A modal analysis of the MMABH plate is performed, confirming its damping effect over a wide frequency band, especially at low frequencies.

11.
Mol Carcinog ; 62(10): 1546-1562, 2023 10.
Article in English | MEDLINE | ID: mdl-37493101

ABSTRACT

Circular RNAs (circRNAs), a type of endogenous noncoding RNA (ncRNA), exert vital roles in leukemia progression and are promising prognostic factors. Here, we report a novel circRNA, circSLC25A13 (hsa_circ_0081188), which was increased in acute myeloid leukemia (AML) patients with poor overall survival (OS) comparing to patients with good prognosis. Knockdown of circSLC25A13 in AML cells inhibited proliferation and increased cell apoptosis in vitro and in vivo. Enhanced circSLC25A13 expression promoted the survival of AML cells. Mechanistically, circSLC25A13 played as a microRNA sponge of miR-616-3p, which inhibited the expression of adenylate cyclase 2 (ADCY2). Downregulation of miR-616-3p and overexpression of ADCY2 partially rescued circSLC25A13 deficient induced cell growth arrest. In summary, through competitive absorption of miR-616-3p and thereby upregulating ADCY2 expression, circSLC25A13 promoted AML progression. Moreover, circSLC25A13 may represent a potential novel biomarker for the prognosis of AML and offer a potential therapeutic target for AML treatment.


Subject(s)
Leukemia, Myeloid, Acute , MicroRNAs , Humans , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Down-Regulation , Gene Expression Regulation, Neoplastic , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics
12.
Br J Haematol ; 202(3): 566-577, 2023 08.
Article in English | MEDLINE | ID: mdl-37231991

ABSTRACT

Glutamine metabolic reprogramming in acute myeloid leukaemia (AML) cells contributes to the decreased sensitivity to antileukemic drugs. Leukaemic cells, but not their myeloid counterparts, largely depend on glutamine. Glutamate dehydrogenase 1 (GDH1) is a regulation enzyme in glutaminolysis. However, its role in AML remains unknown. Here, we reported that GDH1 was highly expressed in AML: high GDH1 was one of the independent negative prognostic factors in AML cohort. The dependence of leukaemic cells on GDH1 was proved both in vitro and in vivo. High GDH1 promoted cell proliferation and reduced survival time of leukaemic mice. Targeting GDH1 eliminated the blast cells and delayed AML progression. Mechanistically, GDH1 knockdown inhibited glutamine uptake by downregulating SLC1A5. Moreover, GDH1 invalidation also inhibited SLC3A2 and abrogated the cystine-glutamate antiporter system Xc- . The reduced cystine and glutamine disrupted the synthesis of glutathione (GSH) and led to the dysfunction of glutathione peroxidase-4 (GPX4), which maintains the lipid peroxidation homeostasis by using GSH as a co-factor. Collectively, triggering ferroptosis in AML cells in a GSH depletion manner, GDH1 inhibition was synthetically lethal with the chemotherapy drug cytarabine. Ferroptosis induced by inhibiting GDH1 provides an actionable therapeutic opportunity and a unique target for synthetic lethality to facilitate the elimination of malignant AML cells.


Subject(s)
Glutamate Dehydrogenase , Leukemia, Myeloid, Acute , Mice , Animals , Glutamine/metabolism , Cystine , Cytarabine , Glutathione/metabolism
13.
Front Med ; 17(4): 685-698, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37131085

ABSTRACT

Acyl-CoA synthetase long chain family member 5 (ACSL5), is a member of the acyl-CoA synthetases (ACSs) family that activates long chain fatty acids by catalyzing the synthesis of fatty acyl-CoAs. The dysregulation of ACSL5 has been reported in some cancers, such as glioma and colon cancers. However, little is known about the role of ACSL5 in acute myeloid leukemia (AML). We found that the expression of ACSL5 was higher in bone marrow cells from AML patients compared with that from healthy donors. ACSL5 level could serve as an independent prognostic predictor of the overall survival of AML patients. In AML cells, the ACSL5 knockdown inhibited cell growth both in vitro and in vivo. Mechanistically, the knockdown of ACSL5 suppressed the activation of the Wnt/ß-catenin pathway by suppressing the palmitoylation modification of Wnt3a. Additionally, triacsin c, a pan-ACS family inhibitor, inhibited cell growth and robustly induced cell apoptosis when combined with ABT-199, the FDA approved BCL-2 inhibitor for AML therapy. Our results indicate that ACSL5 is a potential prognosis marker for AML and a promising pharmacological target for the treatment of molecularly stratified AML.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Antineoplastic Agents/therapeutic use , Apoptosis , beta Catenin/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Lipoylation , Prognosis , Wnt Signaling Pathway
14.
Ageing Res Rev ; 86: 101871, 2023 04.
Article in English | MEDLINE | ID: mdl-36736378

ABSTRACT

Alzheimer's disease (AD) is known as an age-related irreversible neurodegenerative disease. AD seriously endangers the health of the elderly, but there is still no effective treatment. In the past several decades, the significant role of astrocytes in the process of AD has been universally acknowledged. In addition, extracellular vesicles (EVs) have been recognized as an essential mediator in intercellular communication and participate in various pathophysiological processes by carrying and transporting diverse cargoes. Moreover, specific conditions and stimuli can modulate the amount and properties of astrocyte-derived EVs (ADEVs) to affect AD progression. Thus, recent studies focused on the involvement of ADEVs in the pathogenesis of AD and the potential application of ADEVs in the diagnosis and treatment of AD, which provides a new direction and possibility for revealing the mystery of AD. Interestingly, it can be concluded that ADEVs have both pathogenic and protective effects in the process of AD through a comprehensive generalization. In this review, we aim to summarize the multi-faces of ADEVs effects on AD development, which can provide a novel strategy to investigate the underlying mechanism in AD. We also summarize the current ADEVs clinically relevant studies to raise the potential use of ADEVs in the discovery of novel biomarkers for diagnosis and therapeutic targets for AD.


Subject(s)
Alzheimer Disease , Extracellular Vesicles , Neurodegenerative Diseases , Humans , Aged , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Astrocytes , Neurodegenerative Diseases/pathology , Extracellular Vesicles/pathology , Biomarkers
15.
Sci Rep ; 13(1): 1608, 2023 01 28.
Article in English | MEDLINE | ID: mdl-36709211

ABSTRACT

Intrahepatic cholestasis of pregnancy (ICP) is a rare liver disease occurring during pregnancy that is characterized by disordered bile acid (BA) metabolism. It is related to adverse clinical outcomes in both the mother and fetus. Our aim was to evaluate the BA metabolism profiles in different types of ICP and investigate the association between specific BAs and perinatal complications in ICP patients. We consecutively evaluated 95 patients with ICP, in which 53 patients were diagnosed with early-onset ICP (EICP) and 42 patients were diagnosed with late-onset ICP (LICP). Concentrations of 15 BA components were detected using high-performance liquid chromatography tandem mass spectrometry. Clinical information was abstracted from the medical records. The percentage of conjugated bile acids increased in ICP patients. Specifically, taurocholic acid (TCA) accumulated in LICP patients, and glycocholic acid (GCA) predominated in EICP patients. A higher preterm birth incidence was observed among ICP patients. Albumin, total bile acids, total bilirubin and GCA percentage values at ICP diagnosis predicts 83.5% of preterm birth in EICP, and the percentage of TCA in total bile acids at ICP diagnosis predicts 93.2% of preterm birth in LICP. This analysis showed that the BA metabolism profiles of EICP and LICP were distinct. Increased hepatic load was positively correlated with preterm birth in EICP. An elevated TCA percentage in total bile acids provides a biomarker to predict preterm birth in LICP.


Subject(s)
Cholestasis, Intrahepatic , Pregnancy Complications , Premature Birth , Pregnancy , Female , Humans , Infant, Newborn , Bile Acids and Salts , Premature Birth/epidemiology , Pregnancy Complications/epidemiology , Cholestasis, Intrahepatic/diagnosis , Pregnancy Outcome
16.
CNS Neurosci Ther ; 29(1): 239-255, 2023 01.
Article in English | MEDLINE | ID: mdl-36261870

ABSTRACT

AIMS: There is growing evidence that the gut microbiota plays a significant part in the pathophysiology of chronic stress. The dysbiosis of the gut microbiota closely relates to dysregulation of microbiota-host cometabolism. Composition changes in the gut microbiota related to perturbations in metabolic profiles are vital risk factors for disease development. Hyperbaric oxygen therapy is commonly applied as an alternative or primary therapy for various diseases. Therefore, a metabolic and gut bacteria perspective is essential to uncover possible mechanisms of chronic stress and the therapeutic effect of hyperbaric oxygenation. We determined that there were significantly disturbed metabolites and disordered gut microbiota between control and chronic stress group. The study aims to offer further information on the interactions between host metabolism, gut microbiota, and chronic stress. METHODS: At present, chronic unpredictable mild stress is considered the most widespread method of modeling chronic stress in animals, so we used a chronic unpredictable mild stress mouse model to characterize changes in the metabolome and microbiome of depressed mice by combining 16S rRNA gene sequencing and UHPLC-MS/MS-based metabolomics. Pearson's correlation-based clustering analysis was performed with above metabolomics and fecal microbiome data to determine gut microbiota-associated metabolites. RESULTS: We found that 18 metabolites showed a significant correlation with campylobacterota. Campylobacterota associated metabolites were significantly enriched mainly in the d-glutamate and d-glutamine metabolism. Hyperoxia treatment may improve depression-like behaviors in chronic stress model mice through regulating the disrupted metabolites. CONCLUSIONS: Hyperbaric oxygen improves depression-like behaviors in chronic stress model mice by remodeling Campylobacterota associated metabolites.


Subject(s)
Gastrointestinal Microbiome , Hyperbaric Oxygenation , Mice , Animals , Depression/therapy , Depression/metabolism , RNA, Ribosomal, 16S/genetics , Tandem Mass Spectrometry
17.
Front Endocrinol (Lausanne) ; 13: 999154, 2022.
Article in English | MEDLINE | ID: mdl-36440200

ABSTRACT

Objective: To explore the effect of maternal body mass index (BMI) on steroid hormone profiles in women with gestational diabetes mellitus (GDM) and those with normal glucose tolerance (NGT). Methods: We enrolled 79 women with NGT and 80 women with GDM who had a gestational age of 24-28 weeks. The participants were grouped according to their BMI. We quantified 11 steroid hormones profiles by liquid chromatography-tandem mass spectrometry and calculated the product-to-precursor ratios in the steroidogenic pathway. Results: Women with GDM and BMI<25kg/m2 showed higher concentrations of dehydroepiandrosterone (DHEA) (p<0.001), testosterone (T) (p=0.020), estrone (E1) (p=0.010) and estradiol (E2) (p=0.040) and lower Matsuda index and HOMA-ß than women with NGT and BMI<25kg/m2. In women with GDM, concentrations of E1 (p=0.006) and E2 (p=0.009) declined, accompanied by reduced E2/T (p=0.008) and E1/androstenedione (A4) (p=0.010) in the BMI>25 kg/m2 group, when compared to that in the BMI<25 kg/m2 group. The values of E2/T and E1/A4 were used to evaluate the cytochrome P450 aromatase enzyme activity in the steroidogenic pathway. Both aromatase activities negatively correlated with the maternal BMI and positively correlated with the Matsuda index in women with GDM. Conclusions: NGT women and GDM women with normal weight presented with different steroid hormone profiles. Steroidogenic pathway profiling of sex hormones synthesis showed a significant increase in the production of DHEA, T, E1, and E2 in GDM women with normal weight. Additionally, the alteration of steroid hormone metabolism was related to maternal BMI in women with GDM, and GDM women with overweight showed reduced estrogen production and decreased insulin sensitivity compared with GDM women with normal weight.


Subject(s)
Diabetes, Gestational , Pregnancy , Female , Humans , Infant , Diabetes, Gestational/metabolism , Body Mass Index , Aromatase , Insulin , Estradiol , Dehydroepiandrosterone
18.
Front Microbiol ; 13: 1038682, 2022.
Article in English | MEDLINE | ID: mdl-36225349

ABSTRACT

[This corrects the article DOI: 10.3389/fmicb.2022.906979.].

19.
Front Microbiol ; 13: 906979, 2022.
Article in English | MEDLINE | ID: mdl-36051769

ABSTRACT

The importance of the microbiome is increasingly prominent. For example, the human microbiome has been proven to be strongly associated with health conditions, while the environmental microbiome is recognized to have a profound influence on agriculture and even the global climate. Furthermore, the microbiome can serve as a fascinating reservoir of genes that encode tremendously valuable compounds for industrial and medical applications. In the past decades, various technologies have been developed to better understand and exploit the microbiome. In particular, microfluidics has demonstrated its strength and prominence in the microbiome research. By taking advantage of microfluidic technologies, inherited shortcomings of traditional methods such as low throughput, labor-consuming, and high-cost are being compensated or bypassed. In this review, we will summarize a broad spectrum of microfluidic technologies that have addressed various needs in the field of microbiome research, as well as the achievements that were enabled by the microfluidics (or technological advances). Finally, how microfluidics overcomes the limitations of conventional methods by technology integration will also be discussed.

20.
Metabolomics ; 18(8): 66, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35925420

ABSTRACT

INTRODUCTION: Nowadays,the mechanical ventilation (MV) aims to rest the respiratory muscles while providing adequate gas exchange, and it has been a part of basic life support during general anesthesia as well as in critically ill patients with and without respiratory failure. However, MV itself has the potential to cause or worsen lung injury, which is also known as ventilator-induced lung injury (VILI). Thus, the early diagnosis of VILI is of great importance for the prevention and treatment of VILI. OBJECTIVE: This study aimed to investigate the metabolomes in the lung and plasma of mice receiving mechanical ventilation (MV). METHODS: Healthy mice were randomly assigned into control group; (2) high volume tidal (HV) group (30 ml/kg); (3) low volume tidal (LV) group (6 ml/kg). After ventilation for 4 h, mice were sacrificed and the lung tissue and plasma were collected. The lung and plasma were processed for the metabolomics analysis. We also performed histopathological examination on the lung tissue. RESULTS: We detected moderate inflammatory damage with alveolar septal thickening in the HV group compared with the normal and LV groups.The metabolomics analysis results showed MV altered the metabolism which was characterized by the dysregulation of γ-amino butyric acid (GABA) system and urea cycle (desregulations in plasma and lung guanidinosuccinic acid, argininosuccinic acid, succinic acid semialdehyde and lung GABA ), Disturbance of citric acid cycle (CAC) (increased plasma glutamine and lung phosphoenol pyruvate) and redox imbalance (desregulations in plasma and/or lung ascorbic acid, chenodeoxycholic acid, uric acid, oleic acid, stearidonic acid, palmitoleic acid and docosahexaenoic acid). Moreover, the lung and plasma metabolomes were also significantly different between LV and HV groups. CONCLUSIONS: Some lung and plasma metabolites related to the GABA system and urea cycle, citric acid cycle and redox balance were significantly altered, and they may be employed for the evaluation of VILI and serve as targets in the treatment of VILI.


Subject(s)
Metabolomics , Ventilator-Induced Lung Injury , Animals , Lung/metabolism , Mice , Mice, Inbred C57BL , Urea/metabolism , Ventilator-Induced Lung Injury/metabolism , Ventilator-Induced Lung Injury/pathology , Ventilator-Induced Lung Injury/prevention & control , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...