Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Heliyon ; 10(17): e36180, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39281437

ABSTRACT

Background: Inhibin is a member of the transforming growth factor family that influences reproduction in animals. Objective: The purpose of this study was to obtain nanobodies from the phage antibody library constructed by us that can specifically bind to inhibin α-subunit. Methods: In this study, camels were immunized with Kazakh sheep inhibin-α protein that expressed in BL21 E. coli, and the camel VHH nanobody phage display library was prepared using nested PCR. The nanobodies specifically binding to inhibin α-subunit in the library were screened by three rounds of immunoaffinity screening and phage enzyme-linked immunosorbent assay (phage ELISA). The functions of the selected nanobodies were identified using molecular simulation docking, ELISA affinity test, and sheep immunity test. Results: A nanobody display library was successfully constructed with a capacity of 1.05 × 1012 CFU, and four inhibin-α-subunit-specific nanobodies with an overall similarity of 69.34 % were screened from the library, namely, Nb-4, Nb-15, Nb-26, and Nb-57. The results of molecular simulation docking revealed that four types of nanobodies were complexed with inhibin-α protein mainly through hydrophobic bonds. Immunity tests revealed that the nanobody Nb-4 could effectively inhibit sheep inhibin A/B and could significantly improve the FSH level in sheep. Conclusion: Four inhibin α-subunit-specific nanobodies with biological functions were successfully screened. To the best of our knowledge, this is a new reproductive immunomodulatory pathway of inhibin α-subunit, which may change the secretion of FSH in the ovary, thus changing the estrous cycle of organisms.

2.
Foodborne Pathog Dis ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625018

ABSTRACT

Salmonella Typhimurium (STM) is an important zoonotic Gram-negative pathogen that can cause infection in a variety of livestock and poultry. Meanwhile, as an important foodborne pathogen, the bacterium can survive in various stressful environments and transmits through the fecal-oral route, posing a serious threat to global food safety. To investigate the roles of STM1863, a member of the DUFs protein family, involved in STM environmental adaptation, biofilm formation, and virulence. We analyzed the molecular characteristics of the protein encoded by STM1863 gene and examined intra- and extracellular expression levels of STM1863 gene in mouse macrophages. Furthermore, we constructed STM1863 gene deletion and complementation strains and determined its environmental adaptation under stressful conditions such as acid, alkali, high salt, bile salt, and oxidation. And the capacity of biofilm formation and pathogenicity of those strains were analyzed and compared. In addition, the interaction between the promoter of STM1863 gene and RcsB protein was analyzed using DNA gel electrophoresis migration assay (electrophoretic mobility shift assay [EMSA]). The experiments revealed that acid adaptability and biofilm formation ability of STM1863 gene deletion strain were significantly weakened compared with the parental and complementary strains. Moreover, the adhesion and invasion ability of STM1863 deletion strain to mouse macrophages was significantly decreased, while the median lethal dose (LD50) increased by 2.148-fold compared with the parental strain. In addition, EMSA confirmed that RcsB protein could bind to the promoter sequence of STM1863 gene, suggesting that the expression of STM1863 gene might be modulated by RcsB. The present study demonstrated for the first time that STM1863, a member of the DUFs protein family, is involved in the modulation of environmental adaptation, biofilm formation, and virulence.

3.
Pol J Microbiol ; 70(4): 479-487, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35003279

ABSTRACT

Salmonella enterica subsp. enterica serovar Typhimurium (ST) is an intracellularly parasitic bacterium. This zoonotic pathogen causes food poisoning and thus imposes a severe threat to food safety. Here, to understand the regulatory roles of the novel transcription factor STM0859 on the response of ST to environmental stress and biofilm formation, the STM0859 gene-deficient strain and the complementation strain ΔSTM0859/STM0859 were generated, respectively. Then, its capacity of responding to environmental stresses and biofilm (BF) formation ability under different stresses, including acid, alkali, high salt, cholate, and oxidative stresses was tested. We further analyzed the interaction between the STM0859 protein and the promoter of the acid stress response-related gene rcsB by performing an electrophoresis mobility shift assay (EMSA). The results showed that acid resistance and BF formation capacities of ST-ΔSTM0859 strain were significantly weaker, as compared with those of Salmonella Typhimurium SL1344 (ST-SL1344) wild strain (p < 0.01). Quantitative qRT-PCR analysis showed that the expression levels of acid stress and BF formation-related genes, rcsB and rpoS, of ST-ΔSTM0859 strain were significantly reduced at the transcription levels, while the transcription levels of these genes were fully restored in complementation strain ST-ΔSTM0859/STM0859. The results of EMSA showed that STM0859 was capable of binding the promoter DNA fragments of the rcsB gene, suggesting that STM0859 can promote the transcription of the rcsB gene through interaction with its promoter, thereby exerting an indirectly regulatory role on the adaptive responses to acid stress and BF formation of ST. This study provided new insights into the regulatory mechanisms of the LysR family factors on the tolerances of ST under adverse environmental stresses.


Subject(s)
Salmonella typhimurium , Stress, Physiological , Bacterial Proteins/metabolism , Biofilms , Gene Expression Regulation, Bacterial , Salmonella typhimurium/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL