Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
World J Diabetes ; 15(3): 502-518, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38591083

ABSTRACT

BACKGROUND: Jianpi Gushen Huayu Decoction (JPGS) has been used to clinically treat diabetic nephropathy (DN) for many years. However, the protective mechanism of JPGS in treating DN remains unclear. AIM: To evaluate the therapeutic effects and the possible mechanism of JPGS on DN. METHODS: We first evaluated the therapeutic potential of JPGS on a DN mouse model. We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics. Furthermore, we examined the effects of JPGS on c-Jun N-terminal kinase (JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor family pyrin domain containing 3 (NLRP3). RESULTS: The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress. Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice. A total of 51 differential metabolites were screened. Pathway analysis results indicated that nine pathways significantly changed between the control and model groups, while six pathways significantly altered between the model and JPGS groups. Pathways related to cysteine and methionine metabolism; alanine, tryptophan metabolism; aspartate and glutamate metabolism; and riboflavin metabolism were identified as the key pathways through which JPGS affects DN. Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors. CONCLUSION: JPGS could markedly treat mice with streptozotocin (STZ)-induced DN, which is possibly related to the regulation of several metabolic pathways found in kidneys. Furthermore, JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathway-mediated apoptosis in DN mice.

2.
Biomed Chromatogr ; 38(1): e5763, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37858975

ABSTRACT

Alisol B 23-acetate (AB23A) has been demonstrated to have beneficial effects on nonalcoholic steatohepatitis (NASH). However, the mechanisms of AB23A on NASH remain unclear. This study aimed to investigate the mechanisms underlying the metabolic regulatory effects of AB23A on NASH. We used AB23A to treat mice with NASH, which was induced by a methionine and choline deficient (MCD) diet. We initially investigated therapeutic effect and resistance to oxidation and inflammation of AB23A on NASH. Subsequently, we performed untargeted metabolomic analyses and relative validation assessments to evaluate the metabolic regulatory effects of AB23A. AB23A reduced lipid accumulation, ameliorated oxidative stress and decreased pro-inflammatory cytokines in the liver. Untargeted metabolomic analysis found that AB23A altered the metabolites of liver. A total of 55 differential metabolites and three common changed pathways were screened among the control, model and AB23A treatment groups. Further tests validated the effects of AB23A on modulating common changed pathway-involved factors. AB23A treatment can ameliorate NASH by inhibiting oxidative stress and inflammation. The mechanism of AB23A on NASH may be related to the regulation of alanine, aspartate and glutamate metabolism, d-glutamine and d-glutamate metabolism, and arginine biosynthesis pathways.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Methionine/metabolism , Methionine/pharmacology , Choline , Liver/metabolism , Racemethionine/metabolism , Racemethionine/pharmacology , Diet , Inflammation/metabolism , Mice, Inbred C57BL , Disease Models, Animal
3.
Brain Sci ; 13(10)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37891819

ABSTRACT

Brain tumours have significant impacts on patients' quality of life, and current treatments have limited effectiveness. To improve understanding of tumour development and explore new therapies, researchers rely on experimental models. However, reproducing tumour-associated epilepsy (TAE) in these models has been challenging. Existing models vary from cell lines to in vivo studies, but in vivo models are resource-intensive and often fail to mimic crucial features like seizures. In this study, we developed a technique in which normal rat organotypic brain tissue is implanted with an aggressive brain tumour. This method produces a focal invasive lesion that preserves neural responsiveness and exhibits epileptiform hyperexcitability. It allows for real-time imaging of tumour growth and invasion for up to four weeks and microvolume fluid sampling analysis of different regions, including the tumour, brain parenchyma, and peritumoral areas. The tumour cells expand and infiltrate the organotypic slice, resembling in vivo behaviour. Spontaneous seizure-like events occur in the tumour slice preparation and can be induced with stimulation or high extracellular potassium. Furthermore, we assess extracellular fluid composition in various regions of interest. This technique enables live cell confocal microscopy to record real-time tumour invasion properties, whilst maintaining neural excitability, generating field potentials, and epileptiform discharges, and provides a versatile preparation for the study of major clinical problems of tumour-associated epilepsy.

4.
J Diabetes Res ; 2023: 9164883, 2023.
Article in English | MEDLINE | ID: mdl-37840577

ABSTRACT

Diabetic nephropathy (DN) is a metabolic disease wherein chronic hyperglycemia triggers various renal cell dysfunctions, eventually leading to progressive kidney failure. Rosa laevigata Michx. is a traditional Chinese herbal medicine. Many studies have confirmed its antioxidative, anti-inflammatory, and renoprotective effects. However, the effects and mechanisms of Rosa laevigata Michx. polysaccharide (RLP) in DN remain unclear. In this study, a DN mouse model was established to investigate the therapeutic effect of RLP on DN mice. Then, nontargeted metabolomics was used to analyze the potential mechanism of RLP in the treatment of DN. Finally, the effects of RLP on ferroptosis and the PI3K/AKT pathway were investigated. The results demonstrated that RLP effectively alleviated renal injury and reduced inflammation and oxidative stress in the kidney. In addition, nontargeted metabolomic analysis indicated that RLP could modulate riboflavin metabolism and tryptophan metabolism in DN mice. Notably, ferroptosis and PI3K/AKT pathway-mediated apoptosis in the kidney were also ameliorated following RLP treatment. In conclusion, this study confirmed that RLP had a significant therapeutic effect on DN mice. Furthermore, RLP treatment modulated tryptophan metabolism and inhibited ferroptosis and PI3K/AKT pathway-mediated apoptosis in the kidney.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Ferroptosis , Rosa , Mice , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rosa/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Tryptophan/pharmacology , Tryptophan/therapeutic use , Signal Transduction , Apoptosis
5.
Front Endocrinol (Lausanne) ; 14: 1159707, 2023.
Article in English | MEDLINE | ID: mdl-37732114

ABSTRACT

Introduction: Yu-Ye Tang (YYT) is a classical formula widely used in treatment of type 2 diabetes mellitus (T2DM). However, the specific mechanism of YYT in treating T2DM is not clear. Methods: The aim of this study was to investigate the therapeutic effect of YYT on T2DM by establishing a rat model of T2DM. The mechanism of action of YYT was also explored through investigating gut microbiota and serum metabolites. Results: The results indicated YYT had significant therapeutic effects on T2DM. Moreover, YYT could increase the abundance of Lactobacillus, Candidatus_Saccharimonas, UCG-005, Bacteroides and Blautia while decrease the abundance of and Allobaculum and Desulfovibrio in gut microbiota of T2DM rats. Nontargeted metabolomics analysis showed YYT treatment could regulate arachidonic acid metabolism, alanine, aspartate and glutamate metabolism, arginine and proline metabolism, glycerophospholipid metabolism, pentose and glucuronate interconversions, phenylalanine metabolism, steroid hormone biosynthesis, terpenoid backbone biosynthesis, tryptophan metabolism, and tyrosine metabolism in T2DM rats. Discussion: In conclusion, our research showed that YYT has a wide range of therapeutic effects on T2DM rats, including antioxidative and anti-inflammatory effects. Furthermore, YYT corrected the altered gut microbiota and serum metabolites in T2DM rats. This study suggests that YYT may have a therapeutic impact on T2DM by regulating gut microbiota and modulating tryptophan and glycerophospholipid metabolism, which are potential key pathways in treating T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Animals , Rats , RNA, Ribosomal, 16S , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Tryptophan , Metabolomics , Glycerophospholipids
6.
Phys Chem Chem Phys ; 24(16): 9188-9195, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35383804

ABSTRACT

The work function can serve as a characteristic quantity to evaluate the catalytic activity due to its relationship with the surface structure of a material. However, what factors determine the influence of the work function on the electrochemical performance are still unclear. Herein, we elucidate the effect of the work function of Ag on the electrochemical reduction of CO2 to CO by controlling the ratio of exposed crystalline planes. To this end, the exposed surface of Ag powder was regulated by high-energy ball milling and its influence on CO2 reduction was investigated. The surface structure with more Ag(110) surface achieves higher activity and selectivity for CO production, resulting from the lower work function of Ag(110), which dramatically enhances the electron tunnelling probability during CO2 electroreduction. We found that a higher ratio of Ag(110) to Ag(100) leads to a lower work function and thus better electrochemical activity and selectivity. This study demonstrates a promising strategy to enhance the electrochemical performance of metal catalysts through tuning their work functions via regulating exposed crystalline planes.

7.
Chem Commun (Camb) ; 58(17): 2878-2881, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35132980

ABSTRACT

A self-supported silver electrode was prepared by plasma spraying and used for catalysing the hydrogen evolution reaction. Thanks to the non-equilibrium synthetic conditions, the silver catalyst exposes high-energy (200) crystal planes, which enhance the adsorption of hydrogen and improve the intrinsic catalytic activity. As a result, the silver catalyst delivers an overpotential of 349 mV at 10 mA cm-2, which was much lower than those of Ag foil (742 mV) and commercial Ag powder (657 mV). This work provides a new idea of preparing active electrocatalysts by traditional processes.

8.
J Colloid Interface Sci ; 562: 170-181, 2020 Mar 07.
Article in English | MEDLINE | ID: mdl-31838353

ABSTRACT

Ce-Mn-Ox catalysts were synthesized by impregnation (CM-IM), co-precipitation (CM-CP), citrate sol-gel (CM-SG) and hydrothermal (CM-HT) methods. The synthesis methods exhibited a great impact on the physicochemical properties of catalysts, resulting in different catalytic activity. The catalytic oxidation activity of toluene followed the sequence: CM-HT (T50: 234 °C; T90: 246 °C) > CM-SG (T50: 242 °C; T90: 249 °C) > CM-CP (T50: 243 °C; T90: 259 °C) > CM-IM (T50: 251 °C; T90: 261 °C), which was consistent with the sequence of surface relative percentage of Cov, Ce3+, Mn3+, Oα and r values. Among them, CM-HT showed the best catalytic oxidation performance of toluene due to more structural defects, oxygen vacancies, surface adsorption oxygen, normalized conversion rate and other active species. In addition, CM-HT catalysts showed reliable water resistance and good durability, implying the potential industrial application.

SELECTION OF CITATIONS
SEARCH DETAIL