Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Small ; : e2406359, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225380

ABSTRACT

Anode-free lithium-metal batteries (AFLMBs) are desirable candidates for achieving high-energy-density batteries, while severe active Li+ loss and uneven Li plating/stripping behavior impede their practical application. Herein, a trilaminar LS-Cu (LiCPON + Si/C-Cu) current collector is fabricated by radio frequency magnetron sputtering, including a Si/C hybrid lithiophilic layer and a supernatant carbon-incorporated lithium phosphorus oxynitride (LiCPON) solid-state electrolyte layer. Joint experimental and computational characterizations and simulations reveal that the LiCPON solid-state electrolyte layer can decompose into an in situ stout ion-transport-promoting protective layer, which can not only regulate homogeneous Li plating/stripping behavior but also inhibit the pulverization and deactivation of Si/C hybrid lithiophilic layer. When combined with surface prelithiated Li1.2Ni0.13Co0.13Mn0.54O2 (Preli-LRM) cathode, the Preli-LRM||LS-Cu full cell delivers 896.1 Wh kg-1 initially and retains 354.1 Wh kg-1 after 50 cycles. This strategy offers an innovative design of compensating for active Li+ loss and inducing uniform Li plating/stripping behavior simultaneously for the development of AFLMBs.

2.
ACS Omega ; 7(26): 22714-22724, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35811864

ABSTRACT

The flow and heat transfer characteristics of supercritical water within a triangular subchannel of a supercritical water-cooled reactor (SCWR) were numerically studied using the SSG turbulence model. The structural effect of staggered-blade-type grid spacers on the flow and heat transfer characteristics of supercritical water was analyzed. The results show that the wall temperatures calculated by the SSG model are consistent with the experimental data. The structure of the staggered-blade-type grid spacers has a significant effect on the supercritical heat transfer in the large specific heat region. The change in the inner-wall temperature and local heat transfer coefficient caused by the blocking rate at different leaf deflection angles has the same trend in the flow direction. The heat transfer coefficient peak gradually increases with an increase in deflection angle. A clear vortex is generated downstream of the grid spacer, and when the blade angle increases from 0 to 90°, the secondary flow is more obvious, and the velocity near the wall is the largest, which is about 1.99 times the center velocity. As the structure-blocking effect increases, the pressure drop in the subchannel gradually increases and the performance evaluation criteria first increase and then decrease. When using the staggered-blade-type grid spacer to improve the supercritical heat transfer effect, the spacing between adjacent grids should be ensured as far as possible, and avoid using it at the end of the channel.

3.
J Agric Food Chem ; 70(7): 2179-2186, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35148100

ABSTRACT

N-(1-Deoxy-d-fructos-1-yl)-histidine (Fru-His), one of the Amadori compounds, widely presents in processed foods, and its potential functional activities have attracted extensive attention in recent years. In this work, the angiotensin-converting enzyme (ACE) inhibitory activity and mechanism of Fru-His were investigated. The IC50 value of Fru-His was 0.150 ± 0.019 mM, and there was no obvious degradation of Fru-His after digestion simulation, showing that Fru-His has good ACE inhibition and digestive stability. Fru-His was a competitive inhibitor according to the enzyme inhibition kinetic analysis. The interaction between ACE and Fru-His occurred spontaneously mainly through hydrogen bonding, and the process was accompanied by fluorescence quenching and the alteration of the secondary structure of ACE. The molecular docking data supported the above results. Fru-His was attached to ACE's S1 active pocket through hydrogen bonds and interacted with zinc ions in active sites. The present study demonstrates that food-derived Fru-His has the potential to relieve hypertension.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Histidine , Angiotensins , Histidine/pharmacology , Humans , Hypertension , Kinetics , Molecular Docking Simulation , Peptidyl-Dipeptidase A
SELECTION OF CITATIONS
SEARCH DETAIL