Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Struct Biol ; 211(3): 107551, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32589927

ABSTRACT

The interpretation of cell biological processes hinges on the elucidation of the underlying structures. Their three-dimensional analysis using electron tomography has extended our understanding of cellular organelles tremendously. The investigations depend on the availability of appropriate instruments for data recording. So far, such investigations have been done to a great extent on 300 keV transmission electron microscopes. Here we show the implementation of STEM tomography on a 200 kV FEG transmission electron microscope, including the tuning of the condenser for forming a beam with a small illumination aperture, dual-axis data recording, and evaluation of the maximum sample thickness and quality of the data. Our results show that the approach is accomplishable and promising, with high reliability, and reaching excellent data quality from plastic sections with a thickness of at least 900 nm.


Subject(s)
Electron Microscope Tomography/instrumentation , Electron Microscope Tomography/methods , Image Processing, Computer-Assisted/methods , Animals , Kidney/diagnostic imaging , Mice , Software , Tissue Embedding
2.
J Cell Biochem ; 119(10): 8011-8021, 2018 11.
Article in English | MEDLINE | ID: mdl-29380411

ABSTRACT

Due to its structural and molecular similarities to mammalian podocytes, the Drosophila nephrocyte emerged as a model system to study podocyte development and associated diseases. Similar to podocytes, nephrocytes establish a slit diaphragm between foot process-like structures in order to filter the hemolymph. One major obstacle in nephrocyte research is the distinct visualization of this subcellular structure to assess its integrity. Therefore, we developed a specialized dissection and fixation protocol, including high pressure freezing and freeze substitution techniques, to improve the preservation of the intricate ultrastructural details necessary for electron microscopic assessment. By means of scanning transmission electron microscopy (STEM) tomography, a three-dimensional dataset was generated to further understand the complex architecture of the nephrocyte channel system. Moreover, a staining protocol for immunolabeling of ultrathin sections of Epon-embedded nephrocytes is discussed, which allows the reliable detection of GFP-tagged fusion proteins combined with superior sample preservation. Due to the growing number of available GFP-trap fly lines, this approach is widely applicable for high resolution localization studies in wild type and mutant nephrocytes.


Subject(s)
Drosophila Proteins/metabolism , Animals , Drosophila , Drosophila Proteins/genetics , Microscopy, Electron, Scanning Transmission , Podocytes/metabolism , Podocytes/ultrastructure
3.
Cell Mol Life Sci ; 74(24): 4573-4586, 2017 12.
Article in English | MEDLINE | ID: mdl-28717874

ABSTRACT

Mammalian podocytes, the key determinants of the kidney's filtration barrier, differentiate from columnar epithelial cells and several key determinants of apical-basal polarity in the conventional epithelia have been shown to regulate podocyte morphogenesis and function. However, little is known about the role of Crumbs, a conserved polarity regulator in many epithelia, for slit-diaphragm formation and podocyte function. In this study, we used Drosophila nephrocytes as model system for mammalian podocytes and identified a conserved function of Crumbs proteins for cellular morphogenesis, nephrocyte diaphragm assembly/maintenance, and endocytosis. Nephrocyte-specific knock-down of Crumbs results in disturbed nephrocyte diaphragm assembly/maintenance and decreased endocytosis, which can be rescued by Drosophila Crumbs as well as human Crumbs2 and Crumbs3, which were both expressed in human podocytes. In contrast to the extracellular domain, which facilitates nephrocyte diaphragm assembly/maintenance, the intracellular FERM-interaction motif of Crumbs is essential for regulating endocytosis. Moreover, Moesin, which binds to the FERM-binding domain of Crumbs, is essential for efficient endocytosis. Thus, we describe here a new mechanism of nephrocyte development and function, which is likely to be conserved in mammalian podocytes.


Subject(s)
Diaphragm/physiology , Drosophila Proteins/metabolism , Drosophila/metabolism , Drosophila/physiology , Endocytosis/physiology , Membrane Proteins/metabolism , Animals , Diaphragm/metabolism , Epithelial Cells/metabolism , Humans , Mammals/metabolism , Microfilament Proteins/metabolism , Podocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...