Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(2): 108792, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38299112

ABSTRACT

Due to their ability to recognize carbohydrate structures, lectins emerged as potential receptors for bacterial lipopolysaccharides (LPS). Despite growing interest in investigating the association between host receptor lectins and exogenous glycan ligands, the molecular mechanisms underlying bacterial recognition by human lectins are still not fully understood. We contributed to fill this gap by unveiling the molecular basis of the interaction between the lipooligosaccharide of Escherichia coli and the dendritic cell-specific intracellular adhesion molecules (ICAM)-3 grabbing non-integrin (DC-SIGN). Specifically, a combination of different techniques, including fluorescence microscopy, surface plasmon resonance, NMR spectroscopy, and computational studies, demonstrated that DC-SIGN binds to the purified deacylated R1 lipooligosaccharide mainly through the recognition of its outer core pentasaccharide, which acts as a crosslinker between two different tetrameric units of DC-SIGN. Our results contribute to a better understanding of DC-SIGN-LPS interaction and may support the development of pharmacological and immunostimulatory strategies for bacterial infections, prevention, and therapy.

2.
PNAS Nexus ; 2(9): pgad310, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37780233

ABSTRACT

Lipopolysaccharides are a hallmark of gram-negative bacteria, and their presence at the cell surface is key for bacterial integrity. As surface-exposed components, they are recognized by immunity C-type lectin receptors present on antigen-presenting cells. Human macrophage galactose lectin binds Escherichia coli surface that presents a specific glycan motif. Nevertheless, this high-affinity interaction occurs regardless of the integrity of its canonical calcium-dependent glycan-binding site. NMR of macrophage galactose-type lectin (MGL) carbohydrate recognition domain and complete extracellular domain revealed a glycan-binding site opposite to the canonical site. A model of trimeric macrophage galactose lectin was determined based on a combination of small-angle X-ray scattering and AlphaFold. A disulfide bond positions the carbohydrate recognition domain perpendicular to the coiled-coil domain. This unique configuration for a C-type lectin orients the six glycan sites of MGL in an ideal position to bind lipopolysaccharides at the bacterial surface with high avidity.

3.
Chembiochem ; 20(14): 1778-1782, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30919527

ABSTRACT

Carbohydrate-lectin interactions intervene in and mediate most biological processes, including a crucial modulation of immune responses to pathogens. Despite growing interest in investigating the association between host receptor lectins and exogenous glycan ligands, the molecular mechanisms underlying bacterial recognition by human lectins are still not fully understood. Herein, a novel molecular interaction between the human macrophage galactose-type lectin (MGL) and the lipooligosaccharide (LOS) of Escherichia coli strain R1 is described. Saturation transfer difference NMR spectroscopy analysis, supported by computational studies, demonstrated that MGL bound to the purified deacylated LOSR1 mainly through recognition of its outer core and established crucial interactions with the terminal Galα(1,2)Gal epitope. These results assess the ability of MGL to recognise glycan moieties exposed on Gram-negative bacterial surfaces.


Subject(s)
Escherichia coli/chemistry , Lectins, C-Type/metabolism , Lipopolysaccharides/metabolism , Binding Sites , Humans , Lectins, C-Type/chemistry , Lipopolysaccharides/chemistry , Molecular Docking Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...