Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38619942

ABSTRACT

Abdominal aortic aneurysms (AAAs) are rupture-prone dilatations of the aorta. In current clinical practice, the maximal diameter of AAAs is monitored with 2D ultrasound to estimate their rupture risk. Recent studies have shown that 3-dimensional and mechanical AAA parameters might be better predictors for aneurysm growth and rupture than the diameter. These parameters can be obtained with time-resolved 3D ultrasound (3D+t US), which requires robust and automatic segmentation of AAAs from 3D+t US. This study proposes and validates a deep learning (DL) approach for automatic segmentation of AAAs. 500 AAA patients were included for follow-up 3D+t US imaging, resulting in 2495 3D+t US images. Segmentation masks for model training were obtained using a conventional automatic segmentation algorithm ('nonDL'). Four different DL models were trained and validated by (1) comparison to CT and (2) reader scoring. Performance of the nonDL and different DL segmentation strategies were evaluated by comparing Hausdorff distance, Dice scores, accuracy, sensitivity, and specificity with a sign test. All DL models had higher median Dice scores, accuracy, and sensitivity (all p < 0.003) compared to nonDL segmentation. The full image-resolution model without data augmentation showed the highest median Dice score and sensitivity (p < 0.001). Applying the DL model on an independent test group produced fewer poor segmentation scores of 1 to 2 on a five-point scale (8% for DL, 18% for nonDL). This demonstrates that a robust and automatic segmentation algorithm for segmenting abdominal aortic aneurysms from 3D+t US images was developed, showing improved performance compared to conventional segmentation.

2.
Ultrasound Med Biol ; 49(1): 318-332, 2023 01.
Article in English | MEDLINE | ID: mdl-36441033

ABSTRACT

Methods for patient-specific abdominal aortic aneurysm (AAA) progression monitoring and rupture risk assessment are widely investigated. Three-dimensional ultrasound can visualize the AAA's complex geometry and displacement fields. However, ultrasound has a limited field of view and low frame rate (i.e., 3-8 Hz). This article describes an approach to enhance the temporal resolution and the field of view. First, the frame rate was increased for each data set by sequencing multiple blood pulse cycles into one cycle. The sequencing method uses the original frame rate and the estimated pulse wave rate obtained from AAA distension curves. Second, the temporal registration was applied to multi-perspective acquisitions of the same AAA. Third, the field of view was increased through spatial registration and fusion using an image feature-based phase-only correlation method and a wavelet transform, respectively. Temporal sequencing was fully correct in aortic phantoms and was successful in 51 of 62 AAA patients, yielding a factor 5 frame rate increase. Spatial registration of proximal and distal ultrasound acquisitions was successful in 32 of 37 different AAA patients, based on the comparison between the fused ultrasound and computed tomography segmentation (95th percentile Haussdorf distances and similarity indices of 4.2 ± 1.7 mm and 0.92 ± 0.02 mm, respectively). Furthermore, the field of view was enlarged by 9%-49%.


Subject(s)
Aortic Aneurysm, Abdominal , Humans , Aortic Aneurysm, Abdominal/diagnostic imaging , Ultrasonography , Phantoms, Imaging , Tomography, X-Ray Computed , Wavelet Analysis
4.
Front Physiol ; 12: 717593, 2021.
Article in English | MEDLINE | ID: mdl-34483971

ABSTRACT

Currently, the prediction of rupture risk in abdominal aortic aneurysms (AAAs) solely relies on maximum diameter. However, wall mechanics and hemodynamics have shown to provide better risk indicators. Patient-specific fluid-structure interaction (FSI) simulations based on a non-invasive image modality are required to establish a patient-specific risk indicator. In this study, a robust framework to execute FSI simulations based on time-resolved three-dimensional ultrasound (3D+t US) data was obtained and employed on a data set of 30 AAA patients. Furthermore, the effect of including a pre-stress estimation (PSE) to obtain the stresses present in the measured geometry was evaluated. The established workflow uses the patient-specific 3D+t US-based segmentation and brachial blood pressure as input to generate meshes and boundary conditions for the FSI simulations. The 3D+t US-based FSI framework was successfully employed on an extensive set of AAA patient data. Omitting the pre-stress results in increased displacements, decreased wall stresses, and deviating time-averaged wall shear stress and oscillatory shear index patterns. These results underline the importance of incorporating pre-stress in FSI simulations. After validation, the presented framework provides an important tool for personalized modeling and longitudinal studies on AAA growth and rupture risk.

SELECTION OF CITATIONS
SEARCH DETAIL