Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Pharmacy (Basel) ; 12(1)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38392935

ABSTRACT

Pharmaceutical residues end up in surface waters, impacting drinking water sources and contaminating the aquatic ecosystem. Pharmacists can play a role in reducing pharmaceutical residues, yet this is often not addressed in pharmacy undergraduate education. Therefore, we developed the educational module "Reducing Pharmaceuticals in Water" for pharmacy students; this was integrated in our pharmacy simulation game for third year Master of Pharmacy students at the University of Groningen. In this study, we aim to evaluate the effects of the module on students' knowledge of pharmaceutical residues in water, to describe students' experiences in taking the module, and to explore their attitudes towards green pharmacy education in general. This mixed-methods study included quantitative measurements, before and after students took the module (intervention group) and in a control group which did not receive the module. Data were collected between February 2023 and June 2023. Overall, 29 students took the module and 36 students were in the control group. The knowledge score of students in the intervention group (N = 29) increased significantly from 9.3 to 12.9 out of 22 (p < 0.001). The knowledge score of the students in the control group was (8.9 out of 22). Students found the e-learning and the patient cases the most exciting part of this module. Students also recognized the need to including environmental issues in pharmacy education. In conclusion, the module contributes towards improved knowledge and increased awareness of the impact of pharmaceuticals found in water. It represents a promising strategy to strengthen pharmacist's role in mitigating the amount and the effect of pharmaceuticals on water and the environment in the future.

2.
PLoS One ; 19(2): e0296960, 2024.
Article in English | MEDLINE | ID: mdl-38394155

ABSTRACT

Tubulin tyrosine ligase 12 (TTLL12) is a promising target for therapeutic intervention since it has been implicated in tumour progression, the innate immune response to viral infection, ciliogenesis and abnormal cell division. It is the most mysterious of a fourteen-member TTL/TTLL family, since, although it is the topmost conserved in evolution, it does not have predicted enzymatic activities. TTLL12 seems to act as a pseudo-enzyme that modulates various processes indirectly. Given the need to target its functions, we initially set out to identify a property of TTLL12 that could be used to develop a reliable high-throughput screening assay. We discovered that TTLL12 suppresses the cell toxicity of nitrotyrosine (3-nitrotyrosine) and its ligation to the C-terminus of detyrosinated α-tubulin (abbreviated to ligated-nitrotyrosine). Nitrotyrosine is produced by oxidative stress and is associated with cancer progression. Ligation of nitrotyrosine has been postulated to be a check-point induced by excessive cell stress. We found that the cytotoxicities of nitrotyrosine and tubulin poisons are independent of one another, suggesting that drugs that increase nitrotyrosination could be complementary to current tubulin-directed therapeutics. TTLL12 suppression of nitrotyrosination of α-tubulin was used to develop a robust cell-based ELISA assay that detects increased nitrotyrosination in cells that overexpress TTLL12 We adapted it to a high throughput format and used it to screen a 10,000 molecule World Biological Diversity SETTM collection of low-molecular weight molecules. Two molecules were identified that robustly activate nitrotyrosine ligation at 1 µM concentration. This is the pioneer screen for molecules that modulate nitrotyrosination of α-tubulin. The molecules from the screen will be useful for the study of TTLL12, as well as leads for the development of drugs to treat cancer and other pathologies that involve nitrotyrosination.


Subject(s)
Neoplasms , Tubulin , Tyrosine/analogs & derivatives , Humans , Tyrosine/pharmacology , Cell Division , Microtubules
3.
Life Sci Alliance ; 6(11)2023 11.
Article in English | MEDLINE | ID: mdl-37591722

ABSTRACT

Cancer cells make extensive use of the folate cycle to sustain increased anabolic metabolism. Multiple chemotherapeutic drugs interfere with the folate cycle, including methotrexate and 5-fluorouracil that are commonly applied for the treatment of leukemia and colorectal cancer (CRC), respectively. Despite high success rates, therapy-induced resistance causes relapse at later disease stages. Depletion of folylpolyglutamate synthetase (FPGS), which normally promotes intracellular accumulation and activity of natural folates and methotrexate, is linked to methotrexate and 5-fluorouracil resistance and its association with relapse illustrates the need for improved intervention strategies. Here, we describe a novel antifolate (C1) that, like methotrexate, potently inhibits dihydrofolate reductase and downstream one-carbon metabolism. Contrary to methotrexate, C1 displays optimal efficacy in FPGS-deficient contexts, due to decreased competition with intracellular folates for interaction with dihydrofolate reductase. We show that FPGS-deficient patient-derived CRC organoids display enhanced sensitivity to C1, whereas FPGS-high CRC organoids are more sensitive to methotrexate. Our results argue that polyglutamylation-independent antifolates can be applied to exert selective pressure on FPGS-deficient cells during chemotherapy, using a vulnerability created by polyglutamylation deficiency.


Subject(s)
Folic Acid Antagonists , Humans , Folic Acid Antagonists/pharmacology , Methotrexate/pharmacology , Tetrahydrofolate Dehydrogenase/genetics , Folic Acid/pharmacology , Fluorouracil/pharmacology
4.
Front Endocrinol (Lausanne) ; 13: 926210, 2022.
Article in English | MEDLINE | ID: mdl-35966052

ABSTRACT

Growth hormone (GH) and insulin-like growth factor-1 (IGF1) play an important role in mammalian development, cell proliferation and lifespan. Especially in cases of tumor growth there is an urgent need to control the GH/IGF1 axis. In this study we screened a 38,480-compound library, and in two consecutive rounds of analogues selection, we identified active lead compounds based on the following criteria: inhibition the GH receptor (GHR) activity and its downstream effectors Jak2 and STAT5, and inhibition of growth of breast and colon cancer cells. The most active small molecule (BM001) inhibited both the GH/IGF1 axis and cell proliferation with an IC50 of 10-30 nM of human cancer cells. BM001 depleted GHR in human lymphoblasts. In preclinical xenografted experiments, BM001 showed a strong decrease in tumor volume in mice transplanted with MDA-MB-231 breast cancer cells. Mechanistically, the drug acts on the synthesis of the GHR. Our findings open the possibility to inhibit the GH/IGF1 axis with a small molecule.


Subject(s)
Human Growth Hormone , Receptors, Somatotropin , Animals , Cell Proliferation , Growth Hormone/physiology , Humans , Insulin-Like Growth Factor I , Mammals , Mice
5.
Environ Sci Technol ; 56(16): 11398-11408, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35896060

ABSTRACT

The quantification and identification of new plasmid-acquiring bacteria in representative mating conditions is critical to characterize the risk of horizontal gene transfer in the environment. This study aimed to quantify conjugation events resulting from manure application to soils and identify the transconjugants resulting from these events. Conjugation was quantified at multiple time points by plating and flow cytometry, and the transconjugants were recovered by fluorescence-activated cell sorting and identified by 16S rRNA sequencing. Overall, transconjugants were only observed within the first 4 days after manure application and at values close to the detection limits of this experimental system (1.00-2.49 log CFU/g of manured soil, ranging between 10-5 and 10-4 transconjugants-to-donor ratios). In the pool of recovered transconjugants, we found amplicon sequence variants (ASVs) of genera whose origin was traced to soils (Bacillus and Nocardioides) and manure (Comamonas and Rahnella). This work showed that gene transfer from fecal to soil bacteria occurred despite the less-than-optimal conditions faced by manure bacteria when transferred to soils, but these events were rare, mainly happened shortly after manure application, and the plasmid did not colonize the soil community. This study provides important information to determine the risks of AMR spread via manure application.


Subject(s)
Manure , Soil , Anti-Bacterial Agents , Bacteria/genetics , Escherichia coli/genetics , Gene Transfer, Horizontal , Manure/microbiology , Plasmids/genetics , RNA, Ribosomal, 16S/genetics , Soil Microbiology
6.
Front Microbiol ; 12: 656250, 2021.
Article in English | MEDLINE | ID: mdl-34349732

ABSTRACT

Plasmid-mediated dissemination of antibiotic resistance among fecal Enterobacteriaceae in natural ecosystems may contribute to the persistence of antibiotic resistance genes in anthropogenically impacted environments. Plasmid transfer frequencies measured under laboratory conditions might lead to overestimation of plasmid transfer potential in natural ecosystems. This study assessed differences in the conjugative transfer of an IncP-1 (pKJK5) plasmid to three natural Escherichia coli strains carrying extended-spectrum beta-lactamases, by filter mating. Matings were performed under optimal laboratory conditions (rich LB medium and 37°C) and environmentally relevant temperatures (25, 15 and 9°C) or nutrient regimes mimicking environmental conditions and limitations (synthetic wastewater and soil extract). Under optimal nutrient conditions and temperature, two recipients yielded high transfer frequencies (5 × 10-1) while the conjugation frequency of the third strain was 1000-fold lower. Decreasing mating temperatures to psychrophilic ranges led to lower transfer frequencies, albeit all three strains conjugated under all the tested temperatures. Low nutritive media caused significant decreases in transconjugants (-3 logs for synthetic wastewater; -6 logs for soil extract), where only one of the strains was able to produce detectable transconjugants. Collectively, this study highlights that despite less-than-optimal conditions, fecal organisms may transfer plasmids in the environment, but the transfer of pKJK5 between microorganisms is limited mainly by low nutrient conditions.

7.
Sci Total Environ ; 770: 145399, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33736375

ABSTRACT

Application of animal manure to soils results in the introduction of manure-derived bacteria and their antimicrobial resistance genes (ARGs) into soils. ResCap is a novel targeted-metagenomic approach that allows the detection of minority components of the resistome gene pool without the cost-prohibitive coverage depths and can provide a valuable tool to study the spread of antimicrobial resistance (AMR) in the environment. We used high-throughput sequencing and qPCR for 16S rRNA gene fragments as well as ResCap to explore the dynamics of bacteria, and ARGs introduced to soils and adjacent water ditches, both at community and individual scale, over a period of three weeks. The soil bacteriome and resistome showed strong resilience to the input of manure, as manuring did not impact the overall structure of the bacteriome, and its effects on the resistome were transient. Initially, manure application resulted in a substantial increase of ARGs in soils and adjacent waters, while not affecting the overall bacterial community composition. Still, specific families increased after manure application, either through the input of manure (e.g., Dysgonomonadaceae) or through enrichment after manuring (e.g., Pseudomonadaceae). Depending on the type of ARG, manure application resulted mostly in an increase (e.g., aph(6)-Id), but occasionally also in a decrease (e.g., dfrB3) of the absolute abundance of ARG clusters (FPKM/kg or L). This study shows that the structures of the bacteriome and resistome are shaped by different factors, where the bacterial community composition could not explain the changes in ARG diversity or abundances. Also, it highlights the potential of applying targeted metagenomic techniques, such as ResCap, to study the fate of AMR in the environment.


Subject(s)
Manure , Microbiota , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Farms , Genes, Bacterial , Metagenomics , Microbiota/genetics , RNA, Ribosomal, 16S , Soil , Soil Microbiology
8.
Int J Mol Sci ; 22(4)2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33567533

ABSTRACT

Transformed epithelial cells can activate programs of epithelial plasticity and switch from a sessile, epithelial phenotype to a motile, mesenchymal phenotype. This process is linked to the acquisition of an invasive phenotype and the formation of distant metastases. The development of compounds that block the acquisition of an invasive phenotype or revert the invasive mesenchymal phenotype into a more differentiated epithelial phenotype represent a promising anticancer strategy. In a high-throughput assay based on E-cadherin (re)induction and the inhibition of tumor cell invasion, 44,475 low molecular weight (LMW) compounds were screened. The screening resulted in the identification of candidate compounds from the PROAM02 class. Selected LMW compounds activated E-cadherin promoter activity and inhibited cancer cell invasion in multiple metastatic human cancer cell lines. The intraperitoneal administration of selected LMW compounds reduced the tumor burden in human prostate and breast cancer in vivo mouse models. Moreover, selected LMW compounds decreased the intra-bone growth of xenografted human prostate cancer cells. This study describes the identification of the PROAM02 class of small molecules that can be exploited to reduce cancer cell invasion and metastases. Further clinical evaluation of selected candidate inhibitors is warranted to address their safety, bioavailability and antitumor efficacy in the management of patients with aggressive cancers.


Subject(s)
Breast Neoplasms/pathology , Cell Movement , Drug Discovery , Gene Expression Regulation, Neoplastic/drug effects , Prostatic Neoplasms/pathology , Small Molecule Libraries/pharmacology , Animals , Apoptosis , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Proliferation , Female , High-Throughput Screening Assays , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
Sci Total Environ ; 737: 139563, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32512295

ABSTRACT

Manure application can spread antimicrobial resistance (AMR) from manure to soil and surface water. This study evaluated the role of the soil texture on the dynamics of antimicrobial resistance genes (ARGs) in soils and surrounding surface waters. Six dairy farms with distinct soil textures (clay, sand, and peat) were sampled at different time points after the application of manure, and three representative ARGs sul1, erm(B), and tet(W) were quantified with qPCR. Manuring initially increased levels of erm(B) by 1.5 ± 0.5 log copies/kg of soil and tet(W) by 0.8 ± 0.4 log copies/kg across soil textures, after which levels gradually declined. In surface waters from clay environments, regardless of the ARG, the gene levels initially increased by 2.6 ± 1.6 log copies/L, after which levels gradually declined. The gene decay in soils was strongly dependent on the type of ARG (erm(B) < tet(W) < sul1; half-lives of 7, 11, and 75 days, respectively), while in water, the decay was primarily dependent on the soil texture adjacent to the sampled surface water (clay < peat < sand; half-lives of 2, 6, and 10 days, respectively). Finally, recovery of ARG levels was predicted after 29-42 days. The results thus showed that there was not a complete restoration of ARGs in soils between rounds of manure application. In conclusion, this study demonstrates that rather than showing similar dynamics of decay, factors such as the type of ARG and soil texture drive the ARG persistence in the environment.


Subject(s)
Manure , Soil , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Farms , Genes, Bacterial/drug effects , Soil Microbiology
10.
Biochim Biophys Acta Proteins Proteom ; 1865(7): 946-956, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27594533

ABSTRACT

In the last years, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) became an imaging technique which has the potential to characterize complex tumor tissue. The combination with other modalities and with standard histology techniques was achieved by the use of image registration methods and enhances analysis possibilities. We analyzed an oral squamous cell carcinoma with up to 162 consecutive sections with MALDI MSI, hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) against CD31. Spatial segmentation maps of the MALDI MSI data were generated by similarity-based clustering of spectra. Next, the maps were overlaid with the H&E microscopy images and the results were interpreted by an experienced pathologist. Image registration was used to fuse both modalities and to build a three-dimensional (3D) model. To visualize structures below resolution of MALDI MSI, IHC was carried out for CD31 and results were embedded additionally. The integration of 3D MALDI MSI data with H&E and IHC images allows a correlation between histological and molecular information leading to a better understanding of the functional heterogeneity of tumors. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.


Subject(s)
Head and Neck Neoplasms/diagnosis , Head and Neck Neoplasms/pathology , Aged , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/pathology , Humans , Imaging, Three-Dimensional/methods , Immunohistochemistry/methods , Male , Mouth Neoplasms/diagnosis , Mouth Neoplasms/pathology , Multimodal Imaging/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Staining and Labeling/methods
11.
PLoS One ; 11(7): e0159531, 2016.
Article in English | MEDLINE | ID: mdl-27427904

ABSTRACT

Transcription factors have an important role in cancer but are difficult targets for the development of tumour therapies. These factors include the Ets family, and in this study Elk3 that is activated by Ras oncogene /Erk signalling, and is involved in angiogenesis, malignant progression and epithelial-mesenchymal type processes. We previously described the identification and in-vitro characterisation of an inhibitor of Ras / Erk activation of Elk3 that also affects microtubules, XRP44X. We now report an initial characterisation of the effects of XRP44X in-vivo on tumour growth and metastasis in three preclinical models mouse models, subcutaneous xenografts, intra-cardiac injection-bone metastasis and the TRAMP transgenic mouse model of prostate cancer progression. XRP44X inhibits tumour growth and metastasis, with limited toxicity. Tumours from XRP44X-treated animals have decreased expression of genes containing Elk3-like binding motifs in their promoters, Elk3 protein and phosphorylated Elk3, suggesting that perhaps XRP44X acts in part by inhibiting the activity of Elk3. Further studies are now warranted to develop XRP44X for tumour therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Bone Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic , Piperazines/pharmacology , Prostatic Neoplasms/drug therapy , Proto-Oncogene Proteins c-ets/antagonists & inhibitors , Pyrazoles/pharmacology , Animals , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Cell Line, Tumor , Drug Evaluation, Preclinical , Female , Genes, ras/drug effects , Heart Ventricles/metabolism , Heart Ventricles/pathology , Injections, Subcutaneous , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Mice, Transgenic , Microtubules/drug effects , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Neuroglia/drug effects , Neuroglia/metabolism , Neuroglia/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Rats , Signal Transduction , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
12.
J Comput Aided Mol Des ; 28(9): 941-50, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25031075

ABSTRACT

Predicting compound chemical stability is important because unstable compounds can lead to either false positive or to false negative conclusions in bioassays. Experimental data (COMDECOM) measured from DMSO/H2O solutions stored at 50 °C for 105 days were used to predicted stability by applying rule-embedded naïve Bayesian learning, based upon atom center fragment (ACF) features. To build the naïve Bayesian classifier, we derived ACF features from 9,746 compounds in the COMDECOM dataset. By recursively applying naïve Bayesian learning from the data set, each ACF is assigned with an expected stable probability (p(s)) and an unstable probability (p(uns)). 13,340 ACFs, together with their p(s) and p(uns) data, were stored in a knowledge base for use by the Bayesian classifier. For a given compound, its ACFs were derived from its structure connection table with the same protocol used to drive ACFs from the training data. Then, the Bayesian classifier assigned p(s) and p(uns) values to the compound ACFs by a structural pattern recognition algorithm, which was implemented in-house. Compound instability is calculated, with Bayes' theorem, based upon the p(s) and p(uns) values of the compound ACFs. We were able to achieve performance with an AUC value of 84% and a tenfold cross validation accuracy of 76.5%. To reduce false negatives, a rule-based approach has been embedded in the classifier. The rule-based module allows the program to improve its predictivity by expanding its compound instability knowledge base, thus further reducing the possibility of false negatives. To our knowledge, this is the first in silico prediction service for the prediction of the stabilities of organic compounds.


Subject(s)
Artificial Intelligence , Bayes Theorem , Drug Stability , Algorithms , Computer Simulation , Models, Chemical
13.
Transfusion ; 53(10): 2176-82, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23362944

ABSTRACT

BACKGROUND: The United States introduced human T-lymphotropic virus Type I (HTLV-I) screening of blood donors in 1988. The US military uses freshly collected blood products for life-threatening injuries when available stored blood components in theater have been exhausted or when these components are unsuccessful for resuscitation. These donors are screened after donation by the Department of Defense (DoD) retrospective testing program. All recipients of blood collected in combat are tested according to policy soon after and at 3, 6, and 12 months after transfusion. CASE REPORT: A 31-year-old US Army soldier tested positive for HTLV-I 44 days after receipt of emergency blood transfusions for severe improvised explosive device blast injuries. One donor's unit tested HTLV-I positive on the DoD-mandated retrospective testing. Both the donor and the recipient tested reactive with enzyme immunoassay and supplemental confirmation by HTLV-I Western blot. The donor and recipient reported no major risk factors for HTLV-I. Phylogenetic analysis of HTLV-I sequences indicated Cosmopolitan subtype, Subgroup B infections. Comparison of long terminal repeat and env sequences revealed molecular genetic linkage of the viruses from the donor and recipient. CONCLUSION: This case is the first report of transfusion transmission of HTLV-I in the US military during combat operations. The emergency fresh whole blood policy enabled both the donor and the recipient to be notified of their HTLV-I infection. While difficult in combat, predonation screening of potential emergency blood donors with Food and Drug Administration-mandated infectious disease testing as stated by the DoD Health Affairs policy should be the goal of every facility engaged with emergency blood collection in theater.


Subject(s)
HTLV-I Infections/transmission , Transfusion Reaction , Adult , Emergencies , Human T-lymphotropic virus 1/classification , Human T-lymphotropic virus 1/genetics , Humans , Male , Military Personnel , Phylogeny
14.
J Trauma Acute Care Surg ; 73(6 Suppl 5): S472-8, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23192072

ABSTRACT

BACKGROUND: The Armed Services Blood Program (ASBP) provides the farthest-reaching blood supply in the world. This article provides statistics and a review of blood operations in support of combat casualty care during the last 10 years. It also outlines changes in blood doctrine in support of combat casualty care. METHODS: This is a descriptive overview and review of blood product use and transfusions used by ASBP personnel to support combat operations in Iraq and Afghanistan between October 2001 and November 2011. RESULTS: The ASBP initiated major changes in blood availability and age of blood in theater. In support of data published by physicians in theater, showing improved patient survival when a higher ratio of fresh frozen plasma and red blood cells (RBCs) is achieved, plus the use of platelets, the ASBP increased availability of plasma and established platelet collection facilities in theater. New capabilities included emergency collection of apheresis platelets in the battlefield, availability and transfusion of deglycerolized red cells, rapid diagnostic donor screening, and a new modular blood detachment. Forward surgical facilities that were at one time limited to a blood inventory consisting of RBCs now have a complete arsenal of products at their fingertips that may include fresher RBCs, fresh frozen plasma, cryoprecipitate, and platelets. A number of clinical practice guidelines are in place to address these processes. Changes in blood doctrine were made to support new combat casualty care and damage-control resuscitation initiatives. CONCLUSION: Despite the challenges of war in two theaters of operation, a number of improvements and changes to blood policy have been developed during the last 10 years to support combat casualty care. The nature of medical care in combat operations will continue to be dynamic and constantly evolving. The ASBP needs to be prepared to meet future challenges. LEVEL OF EVIDENCE: Epidemiologic study, level IV.


Subject(s)
Blood Banks/organization & administration , Blood Transfusion/statistics & numerical data , Hospitals, Military/organization & administration , Military Medicine/organization & administration , Warfare , Wounds and Injuries/therapy , Afghan Campaign 2001- , Blood Banks/supply & distribution , Critical Care/methods , Female , Humans , Iraq War, 2003-2011 , Male , Mass Casualty Incidents/mortality , Mass Casualty Incidents/statistics & numerical data , Military Personnel/statistics & numerical data , Program Development , Program Evaluation , Resuscitation/methods , Resuscitation/mortality , Retrospective Studies , Risk Assessment , Survival Analysis , Treatment Outcome , Wounds and Injuries/diagnosis , Wounds and Injuries/mortality
15.
J Biomol Screen ; 14(5): 557-65, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19483143

ABSTRACT

The technological evolution of the 1990s in both combinatorial chemistry and high-throughput screening created the demand for rapid access to the compound deck to support the screening process. The common strategy within the pharmaceutical industry is to store the screening library in DMSO solution. Several studies have shown that a percentage of these compounds decompose in solution, varying from a few percent of the total to a substantial part of the library. In the COMDECOM (COMpound DECOMposition) project, the compound stability of screening compounds in DMSO solution is monitored in an accelerated thermal, hydrolytic, and oxidative decomposition program. A large database with stability data is collected, and from this database, a predictive model is being developed. The aim of this program is to build an algorithm that can flag compounds that are likely to decompose-information that is considered to be of utmost importance (e.g., in the compound acquisition process and when evaluation screening results of library compounds, as well as in the determination of optimal storage conditions).


Subject(s)
Dimethyl Sulfoxide/chemistry , Drug Stability , Pharmaceutical Preparations/chemistry , Pharmaceutical Solutions/chemistry , Solvents/chemistry , Databases, Factual , Models, Theoretical , Molecular Structure , Solubility , Water/chemistry
16.
Chemosphere ; 75(2): 243-9, 2009 Apr.
Article in English | MEDLINE | ID: mdl-18561978

ABSTRACT

BioDeNO(x), a novel technique to remove NO(x) from industrial flue gases, is based on absorption of gaseous nitric oxide into an aqueous Fe(II)EDTA(2-) solution, followed by the biological reduction of Fe(II)EDTA(2-) complexed NO to N(2). Besides NO reduction, high rate biological Fe(III)EDTA(-) reduction is a crucial factor for a succesful application of the BioDeNO(x) technology, as it determines the Fe(II)EDTA(2-) concentration in the scrubber liquor and thus the efficiency of NO removal from the gas phase. This paper investigates the mechanism and kinetics of biological Fe(III)EDTA(-) reduction by unadapted anaerobic methanogenic sludge and BioDeNO(x) reactor mixed liquor. The influence of different electron donors, electron mediating compounds and CaSO(3) on the Fe(III)EDTA(-) reduction rate was determined in batch experiments (21mM Fe(III)EDTA(-), 55 degrees C, pH 7.2+/-0.2). The Fe(III)EDTA(-) reduction rate depended on the type of electron donor, the highest rate (13.9mMh(-1)) was observed with glucose, followed by ethanol, acetate and hydrogen. Fe(III)EDTA(-) reduction occurred at a relatively slow (4.1mMh(-1)) rate with methanol as the electron donor. Small amounts (0.5mM) of sulfide, cysteine or elemental sulfur accelerated the Fe(III)EDTA(-) reduction. The amount of iron reduced significantly exceeded the amount that can be formed by the chemical reaction of sulfide with Fe(III)EDTA(-), suggesting that the Fe(III)EDTA(-) reduction was accelerated via an auto-catalytic process with an unidentified electron mediating compound, presumably polysulfides, formed out of the sulfur additives. Using ethanol as electron donor, the specific Fe(III)EDTA(-) reduction rate was linearly related to the amount of sulfide supplied. CaSO(3) (0.5-100mM) inhibited Fe(III)EDTA(-) reduction, probably because SO(3)(2-) scavenged the electron mediating compound.


Subject(s)
Bioreactors , Edetic Acid/chemistry , Iron/chemistry , Nitric Oxide/metabolism , Biodegradation, Environmental , Nitric Oxide/chemistry , Oxidation-Reduction , Sulfides/chemistry , Sulfur/chemistry
17.
Biotechnol Bioeng ; 100(6): 1099-107, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18553393

ABSTRACT

Biological reduction of nitric oxide (NO) to di-nitrogen (N(2)) gas in aqueous Fe(II)EDTA(2-) solutions is a key reaction in BioDeNOx, a novel process for NOx removal from flue gases. The mechanism and kinetics of the first step of NO reduction, that is, the conversion of NO to N(2)O, was determined in batch experiments using various types of inocula. Experiments were performed in Fe(II)EDTA(2-) medium (5-25 mM) under BioDeNOx reactor conditions (55 degrees C, pH 7.2 +/- 0.2) with ethanol as external electron donor. BioDeNOx reactor mixed liquor gave the highest NO reduction rates (+/-0.34 nmol s(-1) mg(prot)(-1)) with an estimated K(m) value for NO lower than 10 nM. The specific NO (to N(2)O) reduction rate depended on the NO (aq) and Fe(II)EDTA(2-) concentration as well as the temperature. The experimental results, complemented with kinetic and thermodynamic considerations, show that Fe(II)EDTA(2-), and not ethanol, is the primary electron donor for NO reduction, that is, the BioDeNOx reactor medium (the redox system Fe(II)EDTA(2-)/Fe(III)EDTA(-)) interferes with the NO reduction electron transfer chain and thus enhances the NO denitrification rate.


Subject(s)
Bioreactors , Nitric Oxide/metabolism , Air Pollutants/chemistry , Bacteria, Anaerobic/enzymology , Biodegradation, Environmental , Bioreactors/microbiology , Buffers , Chromatography, Gas , Edetic Acid , Ethanol/metabolism , Ferric Compounds/metabolism , Ferrous Compounds/metabolism , Kinetics , Nitrogen/analysis , Nitrogen/metabolism , Nitrous Oxide/analysis , Nitrous Oxide/metabolism , Oxidation-Reduction , Waste Disposal, Fluid , Water Purification
18.
Nitric Oxide ; 15(4): 400-7, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16765618

ABSTRACT

The stimulating effect of copper addition on the reduction rate of nitrous oxide (N(2)O) to dinitrogen (N(2)) in the presence of sulfide was investigated in batch experiments (pH 7.0; 55 degrees C). N(2)O was dosed either directly as a gas to the headspace of the bottles or formed as intermediate during the denitrification of nitrite in Fe(II)EDTA(2-)-containing medium and nitrate in Fe(II)EDTA(2-)-free medium. Sulfide was either dosed externally or generated from endogenous sulfur sources during anaerobic incubation of the sludge. In the presence of sulfide (from 15 microM to 1mM), heterotrophic denitrification using ethanol as electron donor was incomplete, i.e., N(2)O accumulated instead of N(2) or was transiently formed. Copper addition (60 microM) rapidly stimulated the reduction of N(2)O to N(2). Zinc addition (60 microM) did not have a similar strong stimulating effect as observed for copper and the N(2)O reduction rate was not stimulated at all upon supply of FeCl(3) (2 mM). Thus, a copper deficiency for N(2)O reduction is most likely developed in the presence of sulfide. It is suggested that sulfide induces this deficiency as it readily precipitates as copper sulfide and thus scavenges copper in the medium or that sulfide inactivates the N(2)OR reductase as it sequesters the copper of this metalloenzyme.


Subject(s)
Copper/pharmacology , Nitric Oxide/chemistry , Nitrous Oxide/chemistry , Sulfides/chemistry , Edetic Acid/chemistry , Oxidation-Reduction
19.
Biotechnol Bioeng ; 94(3): 575-84, 2006 Jun 20.
Article in English | MEDLINE | ID: mdl-16596664

ABSTRACT

BioDeNOx is a novel technique for NOx removal from industrial flue gases. In principle, BioDeNOx is based on NO absorption into an aqueous Fe(II)EDTA2- solution combined with biological regeneration of that scrubber liquor in a bioreactor. The technical and economical feasibility of the BioDeNOx concept is strongly determined by high rate biological regeneration of the aqueous Fe(II)EDTA2- scrubber liquor and by EDTA degradation. This investigation deals with the Fe(II)EDTA2- regeneration capacity and EDTA degradation in a lab-scale BioDeNOx reactor (10-20 mM Fe(II)EDTA2-, pH 7.2 +/- 0.2, 55 degrees C), treating an artificial flue gas (1.5 m3/h) containing 60-155 ppm NO and 3.5-3.9% O2. The results obtained show a contradiction between the optimal redox state of the aqueous FeEDTA solution for NO absorption and the biological regeneration. A low redox potential (below -150 mV vs. Ag/AgCl) is needed to obtain a maximal NO removal efficiency from the gas phase via Fe(II)EDTA2- absorption. Fe(III)EDTA- reduction was found to be too slow to keep all FeEDTA in the reduced state. Stimulation of Fe(III)EDTA- reduction via periodical sulfide additions (2 mM spikes twice a week for the conditions applied in this study) was found to be necessary to regenerate the Fe(II)EDTA2- scrubber liquor and to achieve stable operation at redox potentials below -150 mV (pH 7.2 +/- 0.2). However, redox potentials of below -200 mV should be avoided since sulfide accumulation is unwanted because it is toxic for NO reduction. Very low values for biomass growth rate and yield, respectively, 0.043/d and 0.009 mg protein per mg ethanol, were observed. This might be due to substrate limitations, that is the electron acceptors NO and presumably polysulfide, or to physiological stress conditions induced by the EDTA rich medium or by radicals formed in the scrubber upon the oxidation of Fe(II)EDTA2- by oxygen present in the flue gas. Radicals possibly also induce EDTA degradation, which occurs at a substantial rate: 2.1 (+/-0.1) mM/d under the conditions investigated.


Subject(s)
Biomass , Bioreactors , Edetic Acid/metabolism , Ferric Compounds/metabolism , Nitric Oxide/metabolism , Water Microbiology , Biodegradation, Environmental , Bioreactors/microbiology , Edetic Acid/chemistry , Ferric Compounds/chemistry , Nitric Oxide/chemistry , Oxidation-Reduction , Sewage
20.
Nitric Oxide ; 15(1): 40-9, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16517188

ABSTRACT

Biological reduction of nitric oxide (NO) in aqueous solutions of EDTA chelated Fe(II) is one of the main steps in the BioDeNOx process, a novel bioprocess for the removal of nitrogen oxides (NOx) from polluted gas streams. Since NOx contaminated gases usually also contain sulfurous pollutants, the possible interferences of these sulfur compounds with the BioDeNOx process need to be identified. Therefore, the effect of the sulfur compounds Na2SO4, Na2SO3, and H2S on the biological NO reduction in aqueous solutions of Fe(II)EDTA2- (25 mM, pH 7.2, 55 degrees C) was studied in batch experiments. Sulfate and sulfite were found to not affect the reduction rate of Fe(II)EDTA2- complexed NO under the conditions tested. Sulfide, either dosed externally or formed during the batch incubation out of endogenous sulfur sources or the supplied sulfate or sulfite, influences the production and consumption of the intermediate nitrous oxide (N2O) during Fe(II)EDTA2- bound NO reduction. At low concentrations (0.2 g VSS/l) of denitrifying sludge, 0.2 mM free sulfide completely inhibited the nitrosyl-complex reduction. At higher biomass concentrations (1.3-2.3 g VSS/l), sulfide (from 15 microM to 0.8 mM) induced an incomplete NO denitrification with N2O accumulation. The reduction rates of NO to N2O were enhanced by anaerobic sludge, presumably because it kept FeEDTA in the reduced state.


Subject(s)
Edetic Acid , Ferrous Compounds , Industrial Waste , Nitric Oxide/metabolism , Oxidation-Reduction , Water Purification/methods , Bacteria, Anaerobic/metabolism , Sulfates , Sulfur Compounds , Water Pollution, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...