Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Neonatal Screen ; 9(3)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37489487

ABSTRACT

Residual heel prick Dried Blood Spots (DBS) are valuable samples for retrospective investigation of inborn metabolic diseases (IMD) and biomarker analyses. Because many metabolites suffer time-dependent decay, we investigated the five-year stability of amino acids (AA) in residual heel prick DBS. In 2019/2020, we analyzed 23 AAs in 2170 residual heel prick DBS from the Dutch neonatal screening program, stored from 2013-2017 (one year at +4 °C and four years at room temperature), using liquid chromatography mass-spectrometry. Stability was assessed by AA changes over the five years. Hydroxyproline could not be measured accurately and was not further assessed. Concentrations of 19 out of the remaining 22 AAs degraded significantly, ranked from most to least stable: aspartate, isoleucine, proline, valine, leucine, tyrosine, alanine, phenylalanine, threonine, citrulline, glutamate, serine, ornithine, glycine, asparagine, lysine, taurine, tryptophan and glutamine. Arginine, histidine and methionine concentrations were below the limit of detection and were likely to have been degraded within the first year of storage. AAs in residual heel prick DBS stored at room temperature are subject to substantial degradation, which may cause incorrect interpretation of test results for retrospective biomarker studies and IMD diagnostics. Therefore, retrospective analysis of heel prick blood should be done in comparison to similarly stored heel prick blood from controls.

2.
JIMD Rep ; 64(1): 57-64, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36636597

ABSTRACT

In the Netherlands, newborns are referred by the newborn screening (NBS) Program when a low free carnitine (C0) concentration (<5 µmol/l) is detected in their NBS dried blood spot. This leads to ~85% false positive referrals who all need an invasive, expensive and lengthy evaluation. We investigated whether a ratio of urine C0 / plasma C0 (RatioU:P) can improve the follow-up protocol for primary carnitine deficiency (PCD). A retrospective study was performed in all Dutch metabolic centres, using samples from newborns and mothers referred by NBS due to low C0 concentration. Samples were included when C0 excretion and plasma C0 concentration were sampled on the same day. RatioU:P was calculated as (urine C0 [µmol/mmol creatinine])/(plasma C0 [µmol/l]). Data were available for 59 patients with genetically confirmed PCD and 68 individuals without PCD. The RatioU:P in PCD patients was significantly higher (p value < 0.001) than in those without PCD, median [IQR], respectively: 3.4 [1.2-9.5], 0.4 [0.3-0.8], area under the curve (AUC) 0.837. Classified for age (up to 1 month) and without carnitine suppletion (PCD; N = 12, Non-PCD; N = 40), medians were 6.20 [4.4-8.8] and 0.37 [0.24-0.56], respectively. The AUC for RatioU:P was 0.996 with a cut-off required for 100% sensitivity at 1.7 (yielding one false positive case). RatioU:P accurately discriminates between positive and false positive newborn referrals for PCD by NBS. RatioU:P is less effective as a discriminative tool for PCD in adults and for individuals that receive carnitine suppletion.

SELECTION OF CITATIONS
SEARCH DETAIL
...