Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Audiol Neurootol ; : 1-10, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38437806

ABSTRACT

INTRODUCTION: Aging deteriorates peripheral and central auditory structures and functions. In elders, for an accurate audiological evaluation, it is important to explore beyond the cochlear receptor. Audiograms provide an estimation of hearing thresholds, while the amplitudes and latencies of supra-threshold auditory brainstem response (ABR) can offer noninvasive measures of the auditory pathways functioning. Regarding ABR, in young populations, level-specific chirp (LS CE-chirp) stimulus has been proposed as an alternative synchronizing method to obtain larger ABR responses than those evoked by clicks. However, the supra-threshold characteristics of chirp evoked ABR, and their association to hearing thresholds is relatively unknown in the elderly. The aim of this study was to evaluate supra-threshold LS CE-chirp ABRs in an aged population by comparing their features with click ABRs, and evaluating their relationship with audiometric hearing thresholds. METHODS: We carried out a cross-sectional study to characterize the hearing of 125 adults aged over 65 years. We determined the audiometric hearing thresholds and supra-threshold ABRs elicited by LS CE-chirp and click stimuli at 80 dB nHL. We evaluated associations by means of partial correlations and covariate adjustment. We performed specific frequencies' analysis and subgroup analysis per hearing level. RESULTS: Wave V responses had significantly shorter latencies and larger amplitudes when elicited by LS CE-chirp as compared to click-evoked responses. Audiometric hearing thresholds correlated with age, but ABR characteristics did not. We found mild correlations between hearing thresholds and ABR characteristics, predominantly at higher frequencies and with chirp. We found scarce evidence of correlation between ABR characteristics and the average of behavioral hearing thresholds between 0.5 to 4 kHz (0.5-4 kHz PTA). After subgroup analysis according to the hearing level, no stronger or more significant correlations were found between ABR characteristics and 0.5-4 kHz PTA. DISCUSSION: In this study, we found that supra-threshold LS CE-chirp ABR presented some of the previously described similitudes and differences with supra-threshold click ABR in younger populations. Although, the average amplitude and latency of wave V evoked by LS CE-chirp were larger and faster than those evoked by clicks, these results should be taken with caution at the individual level, and further studies are required to state that LS CE-chirp ABRs are better than click ABRs in elders for clinical evaluations. We did not find consistent associations between hearing thresholds and supra-threshold wave V features, suggesting that these measures should be considered independently in the elderly.

2.
PLoS One ; 19(3): e0299911, 2024.
Article in English | MEDLINE | ID: mdl-38451925

ABSTRACT

INTRODUCTION: The functional evaluation of auditory-nerve activity in spontaneous conditions has remained elusive in humans. In animals, the frequency analysis of the round-window electrical noise recorded by means of electrocochleography yields a frequency peak at around 900 to 1000 Hz, which has been proposed to reflect auditory-nerve spontaneous activity. Here, we studied the spectral components of the electrical noise obtained from cochlear implant electrocochleography in humans. METHODS: We recruited adult cochlear implant recipients from the Clinical Hospital of the Universidad de Chile, between the years 2021 and 2022. We used the AIM System from Advanced Bionics® to obtain single trial electrocochleography signals from the most apical electrode in cochlear implant users. We performed a protocol to study spontaneous activity and auditory responses to 0.5 and 2 kHz tones. RESULTS: Twenty subjects including 12 females, with a mean age of 57.9 ± 12.6 years (range between 36 and 78 years) were recruited. The electrical noise of the single trial cochlear implant electrocochleography signal yielded a reliable peak at 3.1 kHz in 55% of the cases (11 out of 20 subjects), while an oscillatory pattern that masked the spectrum was observed in seven cases. In the other two cases, the single-trial noise was not classifiable. Auditory stimulation at 0.5 kHz and 2.0 kHz did not change the amplitude of the 3.1 kHz frequency peak. CONCLUSION: We found two main types of noise patterns in the frequency analysis of the single-trial noise from cochlear implant electrocochleography, including a peak at 3.1 kHz that might reflect auditory-nerve spontaneous activity, while the oscillatory pattern probably corresponds to an artifact.


Subject(s)
Cochlear Implantation , Cochlear Implants , Adult , Aged , Female , Humans , Middle Aged , Acoustic Stimulation/methods , Audiometry, Evoked Response/methods , Cochlear Nerve/physiology , Noise , Male
3.
Brain Sci ; 13(5)2023 May 12.
Article in English | MEDLINE | ID: mdl-37239266

ABSTRACT

Age-related hearing loss is linked to cognitive impairment, but the mechanisms that relate to these conditions remain unclear. Evidence shows that the activation of medial olivocochlear (MOC) neurons delays cochlear aging and hearing loss. Consequently, the loss of MOC function may be related to cognitive impairment. The α9/α10 nicotinic receptor is the main target of cholinergic synapses between the MOC neurons and cochlear outer hair cells. Here, we explored spatial learning and memory performance in middle-aged wild-type (WT) and α9-nAChR subunit knock-out (KO) mice using the Barnes maze and measured auditory brainstem response (ABR) thresholds and the number of cochlear hair cells as a proxy of cochlear aging. Our results show non-significant spatial learning differences between WT and KO mice, but KO mice had a trend of increased latency to enter the escape box and freezing time. To test a possible reactivity to the escape box, we evaluated the novelty-induced behavior using an open field and found a tendency towards more freezing time in KO mice. There were no differences in memory, ABR threshold, or the number of cochlear hair cells. We suggest that the lack of α9-nAChR subunit alters novelty-induced behavior, but not spatial learning in middle-aged mice, by a non-cochlear mechanism.

4.
Acta Otolaryngol ; 143(3): 242-249, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36943799

ABSTRACT

BACKGROUND: Cisplatin appears to enter the cochlear cells through the organic cation transporter 2 (OCT2). There is recent evidence that multidrug and toxin extrusion protein 1 (MATE1) is involved in cisplatin-induced nephrotoxicity. Its presence and role in the ear are unknown. AIMS/OBJECTIVES: Evaluate the presence and localization of MATE1, and determine the localization of OCT2, in the cochlea. Evaluate cisplatin uptake with regard to MATE1 and OCT2 expression. MATERIAL AND METHODS: Murine cochlear explants and paraffin-embedded cochleae were evaluated with immunohistochemistry for OCT2 and MATE1. Explant cultures were also treated with Texas Red cisplatin to determine their cellular uptake. RESULTS: MATE1 is present in the cochlea. Most intense labeling of MATE1 and OCT2 was seen in the outer hair cells (OHCs) and pillar cells, respectively. Both transporters were observed in the spiral ganglion neurons and stria vascularis. Expression levels of OCT2 and MATE1 decreased following cisplatin exposure. Texas Red cisplatin staining was strong in OHCs and pillar cells. CONCLUSIONS AND SIGNIFICANCE: To the best of our knowledge, this is the first study demonstrating the presence and localization of MATE1 in the cochlea. OCT2 labeling was seen in pillar cells. Consistently, OHCs and pillar cells uptake Texas Red cisplatin.


Subject(s)
Cisplatin , Ototoxicity , Mice , Animals , Cisplatin/toxicity , Organic Cation Transport Proteins/metabolism , Cochlea/metabolism
5.
Acta Otolaryngol ; 143(1): 28-30, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36638044

ABSTRACT

BACKGROUND: Hearing loss is a common disability affecting 5% of the world's population. A lack of opportune diagnosis affects both the individual and society. In order to develop public health policies in the field of hearing health, countries must have information about epidemiology. AIMS/OBJECTIVES: In this review, we describe the information available about prevalence and incidence of hearing loss in school-aged children. MATERIAL AND METHODS: Review of the literature in PubMed. RESULTS: Reported prevalence of hearing loss in school-aged children varied between 0.2% and 7.8%. Several factors could explain the discrepancy in numbers such as definition of hearing loss, cause, and the inclusion of high-frequency hearing loss. The rate of delayed-onset hearing loss at the age of six years old varied between 0.6 and 0.8 per 1000. CONCLUSIONS AND SIGNIFICANCE: The prevalence of hearing loss in school-aged children varied between 0.2% and 7.8%, and the rate of delayed-onset hearing loss at the age of six years old varied between 0.6 and 0.8 per 1000.


Subject(s)
Deafness , Disabled Persons , Hearing Loss , Humans , Child , Hearing Loss/diagnosis , Hearing Loss/epidemiology , Hearing , Hearing Tests , Prevalence
6.
Proc Natl Acad Sci U S A ; 117(21): 11811-11819, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32393641

ABSTRACT

"Growing old" is the most common cause of hearing loss. Age-related hearing loss (ARHL) (presbycusis) first affects the ability to understand speech in background noise, even when auditory thresholds in quiet are normal. It has been suggested that cochlear denervation ("synaptopathy") is an early contributor to age-related auditory decline. In the present work, we characterized age-related cochlear synaptic degeneration and hair cell loss in mice with enhanced α9α10 cholinergic nicotinic receptors gating kinetics ("gain of function" nAChRs). These mediate inhibitory olivocochlear feedback through the activation of associated calcium-gated potassium channels. Cochlear function was assessed via distortion product otoacoustic emissions and auditory brainstem responses. Cochlear structure was characterized in immunolabeled organ of Corti whole mounts using confocal microscopy to quantify hair cells, auditory neurons, presynaptic ribbons, and postsynaptic glutamate receptors. Aged wild-type mice had elevated acoustic thresholds and synaptic loss. Afferent synapses were lost from inner hair cells throughout the aged cochlea, together with some loss of outer hair cells. In contrast, cochlear structure and function were preserved in aged mice with gain-of-function nAChRs that provide enhanced olivocochlear inhibition, suggesting that efferent feedback is important for long-term maintenance of inner ear function. Our work provides evidence that olivocochlear-mediated resistance to presbycusis-ARHL occurs via the α9α10 nAChR complexes on outer hair cells. Thus, enhancement of the medial olivocochlear system could be a viable strategy to prevent age-related hearing loss.


Subject(s)
Aging/physiology , Cochlea , Hair Cells, Auditory, Outer , Presbycusis , Superior Olivary Complex , Animals , Cochlea/physiology , Cochlea/physiopathology , Evoked Potentials, Auditory, Brain Stem/physiology , Feedback, Physiological/physiology , Hair Cells, Auditory, Outer/cytology , Hair Cells, Auditory, Outer/physiology , Mice , Otoacoustic Emissions, Spontaneous/physiology , Presbycusis/physiopathology , Presbycusis/prevention & control , Superior Olivary Complex/cytology , Superior Olivary Complex/physiology
7.
PLoS One ; 15(5): e0233224, 2020.
Article in English | MEDLINE | ID: mdl-32428025

ABSTRACT

Epidemiological evidence shows an association between hearing loss and dementia in elderly people. However, the mechanisms that connect hearing impairments and cognitive decline are still unknown. Here we propose that a suprathreshold auditory-nerve impairment is associated with cognitive decline and brain atrophy. METHODS: audiological, neuropsychological, and brain structural 3-Tesla MRI data were obtained from elders with different levels of hearing loss recruited in the ANDES cohort. The amplitude of waves I (auditory nerve) and V (midbrain) from auditory brainstem responses were measured at 80 dB nHL. We also calculated the ratio between wave V and I as a proxy of suprathreshold brainstem function. RESULTS: we included a total of 101 subjects (age: 73.5 ± 5.2 years (mean ± SD), mean education: 9.5 ± 4.2 years, and mean audiogram thresholds (0.5-4 kHz): 25.5 ± 12.0 dB HL). We obtained reliable suprathreshold waves V in all subjects (n = 101), while replicable waves I were obtained in 92 subjects (91.1%). Partial Spearman correlations (corrected by age, gender, education and hearing thresholds) showed that reduced suprathreshold wave I responses were associated with thinner temporal and parietal cortices, and with slower processing speed as evidenced by the Trail-Making Test-A and digit symbol performance. Non-significant correlations were obtained between wave I amplitudes and other cognitive domains. CONCLUSIONS: These results evidence that reduced suprathreshold auditory nerve responses in presbycusis are associated with slower processing speed and brain structural changes in temporal and parietal regions.


Subject(s)
Auditory Perception/physiology , Cognitive Dysfunction/metabolism , Presbycusis/physiopathology , Acoustic Stimulation , Aged , Aged, 80 and over , Audiometry, Pure-Tone , Auditory Threshold/physiology , Brain/physiopathology , Cochlear Nerve/physiology , Cognitive Dysfunction/etiology , Evoked Potentials, Auditory, Brain Stem/physiology , Female , Hearing/physiology , Humans , Male , Noise , Parietal Lobe/physiopathology , Presbycusis/metabolism , Temporal Lobe/physiopathology
8.
PLoS One ; 15(3): e0229226, 2020.
Article in English | MEDLINE | ID: mdl-32163427

ABSTRACT

In medicine, a misdiagnosis or the absence of specialists can affect the patient's health, leading to unnecessary tests and increasing the costs of healthcare. In particular, the lack of specialists in otolaryngology in third world countries forces patients to seek medical attention from general practitioners, whom might not have enough training and experience for making correct diagnosis in this field. To tackle this problem, we propose and test a computer-aided system based on machine learning models and image processing techniques for otoscopic examination, as a support for a more accurate diagnosis of ear conditions at primary care before specialist referral; in particular, for myringosclerosis, earwax plug, and chronic otitis media. To characterize the tympanic membrane and ear canal for each condition, we implemented three different feature extraction methods: color coherence vector, discrete cosine transform, and filter bank. We also considered three machine learning algorithms: support vector machine (SVM), k-nearest neighbor (k-NN) and decision trees to develop the ear condition predictor model. To conduct the research, our database included 160 images as testing set and 720 images as training and validation sets of 180 patients. We repeatedly trained the learning models using the training dataset and evaluated them using the validation dataset to thus obtain the best feature extraction method and learning model that produce the highest validation accuracy. The results showed that the SVM and k-NN presented the best performance followed by decision trees model. Finally, we performed a classification stage -i.e., diagnosis- using testing data, where the SVM model achieved an average classification accuracy of 93.9%, average sensitivity of 87.8%, average specificity of 95.9%, and average positive predictive value of 87.7%. The results show that this system might be used for general practitioners as a reference to make better decisions in the ear pathologies diagnosis.


Subject(s)
Ear Diseases/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Adolescent , Adult , Cerumen/diagnostic imaging , Child , Decision Trees , Diagnosis, Computer-Assisted/methods , Early Diagnosis , Humans , Male , Middle Aged , Myringosclerosis/diagnostic imaging , Otitis Media/diagnostic imaging , Sensitivity and Specificity , Support Vector Machine , Young Adult
9.
Hear Res ; 373: 10-22, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30578960

ABSTRACT

In mammals, the cochlear sensory epithelium becomes quiescent early during development. After the first postnatal week, there is no cell replacement or proliferation, and severe damage leads to permanent deafness. Supporting cells' trans-differentiation has been suggested as a way to regenerate cochlear hair cells after damage. However, they are also needed for proper functionality. Cdkn1b (p27Kip1) participates in the cochlear terminal mitosis state achieved during development. Its expression is maintained in adult supporting cells and its postnatal deletion has induced cochlear proliferation in vitro and in vivo. Therefore, its manipulation has been proposed as a feasible way to induce proliferation of supporting cells after birth. Nevertheless, the literature is scarce regarding feasible methods to directly decrease p27Kip1 in the clinical domain. The effects of p27Kip1 knockdown using viral vectors are not completely elucidated and no pharmacological approaches to decrease p27Kip1 in the cochlea have been tested in vivo before. This study explores the ability of p27Kip1 messenger knockdown and pharmacological transcriptional inhibition to induce proliferation of supporting cells in the P0 neonatal rat cochlea in vivo. Respectively, lentiviral vectors transducing shRNA against p27Kip1 were administered into the scala media or Alsterpaullone 2-Cyanoethyl into the round window niche. Cell markers and gene expression were assessed through immunostaining and qRT-PCR. Despite both methods significantly decreasing p27Kip1 expression in vivo, signs of toxicity in the organ of Corti were not found; however, relevant proliferation was not found either. Finally, cochlear damage was added to increase the response in vitro, achieving only a mild to moderate proliferation induction. We conclude that our approaches were not able to stimulate the recall of supporting cell proliferation despite significantly decreased p27Kip1 levels in vivo. Considering the evaluation of the cochlea at a very responsive stage, we propose that the level of isolated modification of p27Kip1 expression in living mammals achievable through these approaches is insufficient to induce proliferation of supporting cells. Future proliferation induction experiments in the cochlea should study other methods and genes.


Subject(s)
Cell Proliferation , Cochlea/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Labyrinth Supporting Cells/metabolism , Animals , Animals, Newborn , Benzazepines/pharmacology , Cell Proliferation/drug effects , Cochlea/drug effects , Cochlea/pathology , Cyclin-Dependent Kinase Inhibitor p27/genetics , Down-Regulation , Indoles/pharmacology , Labyrinth Supporting Cells/drug effects , Labyrinth Supporting Cells/pathology , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rats, Sprague-Dawley , Signal Transduction , Tissue Culture Techniques
10.
PLoS One ; 11(12): e0167286, 2016.
Article in English | MEDLINE | ID: mdl-27918591

ABSTRACT

Neonatal mouse cochlear supporting cells have a limited ability to divide and trans-differentiate into hair cells, but this ability declines rapidly in the two weeks after birth. This decline is concomitant with the morphological and functional maturation of the organ of Corti prior to the onset of hearing. However, despite this association between maturation and loss of regenerative potential, little is known of the molecular changes that underlie these events. To identify these changes, we used RNA-seq to generate transcriptional profiles of purified cochlear supporting cells from 1- and 6-day-old mice. We found many significant changes in gene expression during this period, many of which were related to regulation of proliferation, differentiation of inner ear components and the maturation of the organ of Corti prior to the onset of hearing. One example of a change in regenerative potential of supporting cells is their robust production of hair cells in response to a blockade of the Notch signaling pathway at the time of birth, but a complete lack of response to such blockade just a few days later. By comparing our supporting cell transcriptomes to those of supporting cells cultured in the presence of Notch pathway inhibitors, we show that the transcriptional response to Notch blockade disappears almost completely in the first postnatal week. Our results offer some of the first molecular insights into the failure of hair cell regeneration in the mammalian cochlea.


Subject(s)
Cochlea/physiology , Hair Cells, Auditory/physiology , Hearing/genetics , Receptors, Notch/genetics , Transcription, Genetic/genetics , Animals , Cell Differentiation/genetics , Cell Proliferation/genetics , Ear, Inner/physiology , Gene Expression/genetics , Gene Expression Profiling/methods , Mice , Mice, Inbred ICR , Organ of Corti/physiology , Regeneration/genetics , Signal Transduction/genetics
11.
J Neurosci ; 35(19): 7552-64, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25972180

ABSTRACT

The acquisition of distinct neuronal fates is fundamental for the function of the cerebral cortex. We find that the development of subcerebral projections from layer 5 neurons in the mouse neocortex depends on the high levels of expression of the transcription factor CTIP1; CTIP1 is coexpressed with CTIP2 in neurons that project to subcerebral targets and with SATB2 in those that project to the contralateral cortex. CTIP1 directly represses Tbr1 in layer 5, which appears as a critical step for the acquisition of the subcerebral fate. In contrast, lower levels of CTIP1 in layer 6 are required for TBR1 expression, which directs the corticothalamic fate. CTIP1 does not appear to play a critical role in the acquisition of the callosal projection fate in layer 5. These findings unravel a key step in the acquisition of cell fate for closely related corticofugal neurons and indicate that differential dosages of transcriptions factors are critical to specify different neuronal identities.


Subject(s)
Carrier Proteins/metabolism , Cerebral Cortex/cytology , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Developmental/genetics , Neural Pathways/physiology , Neurons/physiology , Nuclear Proteins/metabolism , Animals , Animals, Newborn , Carrier Proteins/genetics , Cells, Cultured , Cerebral Cortex/embryology , Cerebral Cortex/growth & development , Doublecortin Domain Proteins , Embryo, Mammalian , Female , Histones/metabolism , Humans , In Vitro Techniques , Ki-67 Antigen/metabolism , Male , Mice , Mice, Transgenic , Microtubule-Associated Proteins/metabolism , Neuropeptides/metabolism , Nuclear Proteins/genetics , Repressor Proteins , T-Box Domain Proteins/metabolism
12.
Front Cell Neurosci ; 9: 110, 2015.
Article in English | MEDLINE | ID: mdl-25873862

ABSTRACT

Sensorineural hearing loss is most commonly caused by the death of hair cells in the organ of Corti, and once lost, mammalian hair cells do not regenerate. In contrast, other vertebrates such as birds can regenerate hair cells by stimulating division and differentiation of neighboring supporting cells. We currently know little of the genetic networks which become active in supporting cells when hair cells die and that are activated in experimental models of hair cell regeneration. Several studies have shown that neonatal mammalian cochlear supporting cells are able to trans-differentiate into hair cells when cultured in conditions in which the Notch signaling pathway is blocked. We now show that the ability of cochlear supporting cells to trans-differentiate declines precipitously after birth, such that supporting cells from six-day-old mouse cochlea are entirely unresponsive to a blockade of the Notch pathway. We show that this trend is seen regardless of whether the Notch pathway is blocked with gamma secretase inhibitors, or by antibodies against the Notch1 receptor, suggesting that the action of gamma secretase inhibitors on neonatal supporting cells is likely to be by inhibiting Notch receptor cleavage. The loss of responsiveness to inhibition of the Notch pathway in the first postnatal week is due in part to a down-regulation of Notch receptors and ligands, and we show that this down-regulation persists in the adult animal, even under conditions of noise damage. Our data suggest that the Notch pathway is used to establish the repeating pattern of hair cells and supporting cells in the organ of Corti, but is not required to maintain this cellular mosaic once the production of hair cells and supporting cells is completed. Our results have implications for the proposed used of Notch pathway inhibitors in hearing restoration therapies.

13.
J Assoc Res Otolaryngol ; 14(4): 495-508, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23612739

ABSTRACT

The cells in the organ of Corti do not exhibit spontaneous cell regeneration; hair cells that die after damage are not replaced. Supporting cells can be induced to transdifferentiate into hair cells, but that would deplete their numbers, therefore impairing epithelium physiology. The loss of p27Kip1 function induces proliferation in the organ of Corti, which raises the possibility to integrate it to the strategies to achieve regeneration. Nevertheless, it is not known if the extent of this proliferative potential, as well as its maintenance in postnatal stages, is compatible with providing a basis for eventual therapeutic manipulation. This is due in part to the limited success of approaches to deliver tools to modify gene expression in the auditory epithelium. We tested the hypothesis that the organ of Corti can undergo significant proliferation when efficient manipulation of the expression of regulators of the cell cycle is achieved. Lentiviral vectors were used to transduce all cochlear cell types, with efficiencies around 4 % for hair cells, 43 % in the overall supporting cell population, and 74 % within lesser epithelial ridge (LER) cells. Expression of short hairpin RNA targeting p27Kip1 encoded by the lentiviral vectors led to measurable proliferation in the organ of Corti and increase in LER cells number but not hair cell regeneration. Our results revalidate the use of lentiviral vectors in the study and in the potential therapeutic approaches for inner ear diseases, as well as demonstrate that efficient manipulation of p27Kip1 is sufficient to induce significant proliferation in the postnatal cochlea.


Subject(s)
Cell Proliferation/drug effects , Cyclin-Dependent Kinase Inhibitor p27/deficiency , Cyclin-Dependent Kinase Inhibitor p27/genetics , Gene Expression Regulation/drug effects , Lentivirus/genetics , Organ of Corti/cytology , RNA, Small Interfering/pharmacology , Animals , Cell Cycle/drug effects , Cell Differentiation/drug effects , Cells, Cultured , Gene Expression Regulation/genetics , Gene Knockdown Techniques , Genetic Vectors/genetics , Models, Animal , Organ of Corti/physiology , Rats , Rats, Sprague-Dawley , Regeneration , Transduction, Genetic/methods
14.
PLoS One ; 8(1): e55011, 2013.
Article in English | MEDLINE | ID: mdl-23355906

ABSTRACT

The inner ear develops from a patch of thickened cranial ectoderm adjacent to the hindbrain called the otic placode. Studies in a number of vertebrate species suggest that the initial steps in induction of the otic placode are regulated by members of the Fibroblast Growth Factor (FGF) family, and that inhibition of FGF signaling can prevent otic placode formation. To better understand the genetic pathways activated by FGF signaling during otic placode induction, we performed microarray experiments to estimate the proportion of chicken otic placode genes that can be up-regulated by the FGF pathway in a simple culture model of otic placode induction. Surprisingly, we find that FGF is only sufficient to induce about 15% of chick otic placode-specific genes in our experimental system. However, pharmacological blockade of the FGF pathway in cultured chick embryos showed that although FGF signaling was not sufficient to induce the majority of otic placode-specific genes, it was still necessary for their expression in vivo. These inhibitor experiments further suggest that the early steps in otic placode induction regulated by FGF signaling occur through the MAP kinase pathway. Although our work suggests that FGF signaling is necessary for otic placode induction, it demonstrates that other unidentified signaling pathways are required to co-operate with FGF signaling to induce the full otic placode program.


Subject(s)
Ear, Inner/embryology , Fibroblast Growth Factors/metabolism , Gene Expression Regulation, Developmental/physiology , MAP Kinase Signaling System/physiology , Organogenesis/physiology , Animals , Chick Embryo , Chickens , Ear, Inner/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...