Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Bioprocess Biosyst Eng ; 44(6): 1185-1192, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33582887

ABSTRACT

The current investigation aims to synthesize gold nanoparticles (AuNPs) from aqueous extract of Tamarindus indica and to evaluate the in vitro anti-bacterial and in vivo sedative and anelgescic activities of crude extract as well as synthesized AuNPs. Several methods have been reported to synthesize AuNPs; however, most of them were not ecofriendly. In the present study, the green synthesis of AuNPs has been carried out. Using the green synthesis method, AuNPs of T. indica were synthesized at room temperature (25 °C) by mixing 5 mL of HAuCl4 (1 mM) with 1 mL of T. indica seed extract solution. This extract solution was prepared by taking 5 gm dry seeds in 100 mL of double deionized water with continuous stirring for up to 24 h at 80 °C. The stability of AuNPs was confirmed with the help of relevant experimental techniques including ultraviolet-visible (UV/Vis) showing maximum absorbance at 535-540 nm, Fourier transform infrared showing a broad signal at 3464 cm-1 which can be attributed to either amide or hydroxyl functionalities and atomic force microscopy analysis showed that the biomaterial surrounding AuNPs was agglomerated which proves the formation of discrete nanostructutres. These AuNPs have been evaluated for their antibacterial potential. The results revealed good antibacterial activity of the samples against. Klebsiella pneumonia, Bacillus subtilis and Staphylococcus epidermidis with 10-12 mm zone of inhibition range. The AuNPs were also found stable at high temperature, over a range of pH and in 1 mM salt solution. Moreover, the crude extract and respective AuNPs also exhibited interesting sedative and analgesic activities. Hence, we focused on phytochemicals-mediated synthesis of AuNPs considered as greatest attention in the treatment of anti-bacterial, analgesic, and sedative.


Subject(s)
Anti-Bacterial Agents , Bacteria/growth & development , Gold , Green Chemistry Technology , Metal Nanoparticles/chemistry , Tamarindus/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Gold/chemistry , Gold/pharmacology , Plant Extracts/chemistry , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...