Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biomolecules ; 14(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38672490

ABSTRACT

Vitamin D (vit D) and fish oil (FO) both offer unique health benefits, however, their combined effects have not been evaluated in obesity and nonalcoholic fatty liver disease (NAFLD). Hence, we hypothesized that vit D and FO supplementation would have additive effects in reducing obesity-associated inflammation and NAFLD. Male C57BL6 mice were split into four groups and fed a high fat (HF) diet supplemented with a low (HF; +200 IU vit D) or high dose of vitamin D (HF + D; +1000 IU vit D); combination of vit D and FO (HF-FO; +1000 IU vit D); or only FO (HF-FO; +200 IU vit D) for 12 weeks. We measured body weight, food intake, glucose tolerance, and harvested epididymal fat pad and liver for gene expression analyses. Adiposity was reduced in groups supplemented with both FO and vit D. Glucose clearance was higher in FO-supplemented groups compared to mice fed HF. In adipose tissue, markers of fatty acid synthesis and oxidation were comparable in groups that received vit D and FO individually in comparison to HF. However, the vit D and FO group had significantly lower fatty acid synthesis and higher oxidation compared to the other groups. Vit D and FO also significantly improved fatty acid oxidation, despite similar fatty acid synthesis among the four groups in liver. Even though we did not find additive effects of vit D and FO, our data provide evidence that FO reduces markers of obesity in the presence of adequate levels of vit D.


Subject(s)
Diet, High-Fat , Fish Oils , Mice, Inbred C57BL , Obesity , Vitamin D , Animals , Male , Fish Oils/pharmacology , Fish Oils/administration & dosage , Vitamin D/pharmacology , Vitamin D/administration & dosage , Vitamin D/metabolism , Obesity/metabolism , Mice , Diet, High-Fat/adverse effects , Dietary Supplements , Liver/metabolism , Liver/drug effects , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Mice, Obese , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Body Weight/drug effects
2.
Mol Cell Endocrinol ; 528: 111245, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33753205

ABSTRACT

The Renin-Angiotensin System (RAS) is classically recognized for regulating blood pressure and fluid balance. Recently, this role has extended to other areas including inflammation, obesity, diabetes, as well as breast cancer. RAS components are expressed in normal and cancerous breast tissues, and downregulation of RAS inhibits metastasis, proliferation, angiogenesis, and desmoplasia in the tumor microenvironment. Therefore, RAS inhibitors (Angiotensin receptor blockers, ARBs, or angiotensin converting enzyme inhibitors, ACE-I) may be beneficial as preventive adjuvant therapies to thwart breast cancer development and improve outcomes, respectively. Given the beneficial effects of RAS inhibitors in metabolic diseases, which often co-exist in breast cancer patients, combining RAS inhibitors with other breast cancer therapies may enhance the effectiveness of current treatments. This review scrutinizes above associations, to advance our understanding of the role of RAS in breast cancer and its potential for repurposing of RAS inhibitors to improve the therapeutic approach for breast cancer patients.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/metabolism , Renin-Angiotensin System/drug effects , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL