Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
RNA Biol ; 21(1): 1-18, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38566310

ABSTRACT

RNA modifications, including N-7-methylguanosine (m7G), are pivotal in governing RNA stability and gene expression regulation. The accurate detection of internal m7G modifications is of paramount significance, given recent associations between altered m7G deposition and elevated expression of the methyltransferase METTL1 in various human cancers. The development of robust m7G detection techniques has posed a significant challenge in the field of epitranscriptomics. In this study, we introduce two methodologies for the global and accurate identification of m7G modifications in human RNA. We introduce borohydride reduction sequencing (Bo-Seq), which provides base resolution mapping of m7G modifications. Bo-Seq achieves exceptional performance through the optimization of RNA depurination and scission, involving the strategic use of high concentrations of NaBH4, neutral pH and the addition of 7-methylguanosine monophosphate (m7GMP) during the reducing reaction. Notably, compared to NaBH4-based methods, Bo-Seq enhances the m7G detection performance, and simplifies the detection process, eliminating the necessity for intricate chemical steps and reducing the protocol duration. In addition, we present an antibody-based approach, which enables the assessment of m7G relative levels across RNA molecules and biological samples, however it should be used with caution due to limitations associated with variations in antibody quality between batches. In summary, our novel approaches address the pressing need for reliable and accessible methods to detect RNA m7G methylation in human cells. These advancements hold the potential to catalyse future investigations in the critical field of epitranscriptomics, shedding light on the complex regulatory roles of m7G in gene expression and its implications in cancer biology.


Subject(s)
Guanosine/analogs & derivatives , Nucleotides , RNA , Humans , RNA/chemistry , Nucleotides/metabolism , Methylation , Methyltransferases/genetics , RNA Processing, Post-Transcriptional
2.
Commun Biol ; 7(1): 192, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365881

ABSTRACT

The initial exposure to pathogens and commensals confers innate immune cells the capacity to respond distinctively upon a second stimulus. This training capacity might play key functions in developing an adequate innate immune response to the continuous exposure to bacteria. However, the mechanisms involved in induction of trained immunity by commensals remain mostly unexplored. A. muciniphila represents an attractive candidate to study the promotion of these long-term responses. Here, we show that priming of macrophages with live A. muciniphila enhances bacterial intracellular survival and decreases the release of pro- and anti-inflammatory signals, lowering the production of TNF and IL-10. Global transcriptional analysis of macrophages after a secondary exposure to the bacteria showed the transcriptional rearrangement underpinning the phenotype observed compared to acutely exposed cells, with the increased expression of genes related to phagocytic capacity and those involved in the metabolic adjustment conducing to innate immune training. Accordingly, key genes related to bacterial killing and pro-inflammatory pathways were downregulated. These data demonstrate the importance of specific bacterial members in the modulation of local long-term innate immune responses, broadening our knowledge of the association between gut microbiome commensals and trained immunity as well as the anti-inflammatory probiotic potential of A. muciniphila.


Subject(s)
Inflammation , Verrucomicrobia , Humans , Inflammation/genetics , Verrucomicrobia/genetics , Verrucomicrobia/metabolism , Phenotype , Anti-Inflammatory Agents/metabolism , Akkermansia
3.
J Clin Invest ; 130(7): 3848-3864, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32315290

ABSTRACT

Cancer cells can develop a strong addiction to discrete molecular regulators, which control the aberrant gene expression programs that drive and maintain the cancer phenotype. Here, we report the identification of the RNA-binding protein HuR/ELAVL1 as a central oncogenic driver for malignant peripheral nerve sheath tumors (MPNSTs), which are highly aggressive sarcomas that originate from cells of the Schwann cell lineage. HuR was found to be highly elevated and bound to a multitude of cancer-associated transcripts in human MPNST samples. Accordingly, genetic and pharmacological inhibition of HuR had potent cytostatic and cytotoxic effects on tumor growth, and strongly suppressed metastatic capacity in vivo. Importantly, we linked the profound tumorigenic function of HuR to its ability to simultaneously regulate multiple essential oncogenic pathways in MPNST cells, including the Wnt/ß-catenin, YAP/TAZ, RB/E2F, and BET pathways, which converge on key transcriptional networks. Given the exceptional dependency of MPNST cells on HuR for survival, proliferation, and dissemination, we propose that HuR represents a promising therapeutic target for MPNST treatment.


Subject(s)
Carcinogenesis/metabolism , Cell Proliferation , ELAV-Like Protein 1/metabolism , Neoplasm Proteins/metabolism , Nerve Sheath Neoplasms/metabolism , Signal Transduction , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , ELAV-Like Protein 1/genetics , Humans , Mice , Neoplasm Metastasis , Neoplasm Proteins/genetics , Nerve Sheath Neoplasms/genetics , Nerve Sheath Neoplasms/pathology
4.
Theranostics ; 9(16): 4567-4579, 2019.
Article in English | MEDLINE | ID: mdl-31367240

ABSTRACT

Cerebrospinal fluid (CSF) microRNAs (miRNAs) have emerged as potential biomarkers for minimally invasive diagnosis of central nervous system malignancies. However, despite significant advances in recent years, this field still suffers from poor data reproducibility. This is especially true in cases of infants, considered a new subject group. Implementing efficient methods to study miRNAs from clinically realistic CSF volumes is necessary for the identification of new biomarkers. Methods: We compared six protocols for characterizing miRNAs, using 200-µL CSF from infants (aged 0-7). Four of the methods employed extracellular vesicle (EV) enrichment step and the other two obtained the miRNAs directly from cleared CSF. The efficiency of each method was assessed using real-time PCR and small RNA sequencing. We also determined the distribution of miRNAs among different CSF shuttles, using size-exclusion chromatography. Results: We identified 281 CSF miRNAs from infants. We demonstrated that the miRNAs could be efficiently detected using only 200 µL of biofluid in case of at least two of the six methods. In the exosomal fraction, we found 12 miRNAs that might be involved in neurodevelopment. Conclusion: The Norgen and Invitrogen protocols appear suitable for the analysis of a large number of miRNAs using small CSF samples.


Subject(s)
Central Nervous System Neoplasms/diagnosis , Exosomes/genetics , MicroRNAs/cerebrospinal fluid , Central Nervous System Neoplasms/cerebrospinal fluid , Extracellular Vesicles/genetics , Humans , Infant , Infant, Newborn , MicroRNAs/genetics , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Sequence Analysis, RNA
5.
Emerg Microbes Infect ; 7(1): 19, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29511161

ABSTRACT

Macrophages are cells of the innate immune system with the ability to phagocytose and induce a global pattern of responses that depend on several signaling pathways. We have determined the biosignature of murine bone marrow-derived macrophages and human blood monocytes using transcriptomic and proteomic approaches. We identified a common pattern of genes that are transcriptionally regulated and overall indicate that the response to B. burgdorferi involves the interaction of spirochetal antigens with several inflammatory pathways corresponding to primary (triggered by pattern-recognition receptors) and secondary (induced by proinflammatory cytokines) responses. We also show that the Toll-like receptor family member CD180 is downregulated by the stimulation of macrophages, but not monocytes, with the spirochete. Silencing Cd180 results in increased phagocytosis while tempering the production of the proinflammatory cytokine TNF. Cd180-silenced cells produce increased levels of Itgam and surface CD11b, suggesting that the regulation of CD180 by the spirochete initiates a cascade that increases CR3-mediated phagocytosis of the bacterium while repressing the consequent inflammatory response.


Subject(s)
Antigens, CD/immunology , Borrelia burgdorferi/physiology , Lyme Disease/genetics , Macrophages/immunology , Animals , Antigens, CD/genetics , Borrelia burgdorferi/genetics , Cytokines/genetics , Cytokines/immunology , Humans , Lyme Disease/immunology , Lyme Disease/microbiology , Macrophages/chemistry , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Monocytes/chemistry , Monocytes/immunology , Monocytes/microbiology , Phagocytosis , Proteomics , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology
7.
J Cell Biol ; 210(1): 153-68, 2015 Jul 06.
Article in English | MEDLINE | ID: mdl-26150392

ABSTRACT

Although Schwann cell myelin breakdown is the universal outcome of a remarkably wide range of conditions that cause disease or injury to peripheral nerves, the cellular and molecular mechanisms that make Schwann cell-mediated myelin digestion possible have not been established. We report that Schwann cells degrade myelin after injury by a novel form of selective autophagy, myelinophagy. Autophagy was up-regulated by myelinating Schwann cells after nerve injury, myelin debris was present in autophagosomes, and pharmacological and genetic inhibition of autophagy impaired myelin clearance. Myelinophagy was positively regulated by the Schwann cell JNK/c-Jun pathway, a central regulator of the Schwann cell reprogramming induced by nerve injury. We also present evidence that myelinophagy is defective in the injured central nervous system. These results reveal an important role for inductive autophagy during Wallerian degeneration, and point to potential mechanistic targets for accelerating myelin clearance and improving demyelinating disease.


Subject(s)
Autophagy , Myelin Sheath/pathology , Peripheral Nerve Injuries/pathology , Animals , Cells, Cultured , JNK Mitogen-Activated Protein Kinases/metabolism , Lipid Metabolism , Mice, Transgenic , Myelin Sheath/physiology , Peripheral Nerve Injuries/enzymology , Proto-Oncogene Proteins c-jun/metabolism , Sciatic Nerve/pathology , TOR Serine-Threonine Kinases/metabolism , Wallerian Degeneration/pathology
8.
Methods Mol Biol ; 1293: 83-114, 2015.
Article in English | MEDLINE | ID: mdl-26040683

ABSTRACT

Single-cell genome and transcriptome characterizations will probe to be decisive within the stem cells research, especially to describe appropriately the genetic impact of the diverse stem cells populations that are present in each organism. In the present chapter, we describe in detail how to prepare sequencing libraries out of single cells, for whole genome DNA and mRNA sequencing.


Subject(s)
Genomics , High-Throughput Nucleotide Sequencing , Single-Cell Analysis , Transcriptome , Gene Expression Profiling/methods , Gene Library , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Single-Cell Analysis/methods
9.
Methods ; 77-78: 25-30, 2015 May.
Article in English | MEDLINE | ID: mdl-25697760

ABSTRACT

Prostate cancer is among the most frequent cancers in men, and despite its high rate of cure, the high number of cases results in an elevated mortality worldwide. Importantly, prostate cancer incidence is dramatically increasing in western societies in the past decades, suggesting that this type of tumor is exquisitely sensitive to lifestyle changes. Prostate cancer frequently exhibits alterations in the PTEN gene (inactivating mutations or gene deletions) or at the protein level (reduced protein expression or altered sub-cellular compartmentalization). The relevance of PTEN in this type of cancer is further supported by the fact that the sole deletion of PTEN in the murine prostate epithelium recapitulates many of the features of the human disease. In order to study the molecular alterations in prostate cancer, we need to overcome the methodological challenges that this tissue imposes. In this review we present protocols and methods, using PTEN as proof of concept, to study different molecular characteristics of prostate cancer.


Subject(s)
PTEN Phosphohydrolase/analysis , PTEN Phosphohydrolase/biosynthesis , Prostatic Neoplasms/metabolism , Tumor Suppressor Proteins/analysis , Tumor Suppressor Proteins/biosynthesis , Animals , Humans , Male , Mice , Mutation/genetics , PTEN Phosphohydrolase/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Tumor Suppressor Proteins/genetics
10.
Nucleic Acids Res ; 43(2): 760-74, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25539926

ABSTRACT

Thymocyte differentiation is a complex process involving well-defined sequential developmental stages that ultimately result in the generation of mature T-cells. In this study, we analyzed DNA methylation and gene expression profiles at successive human thymus developmental stages. Gain and loss of methylation occurred during thymocyte differentiation, but DNA demethylation was much more frequent than de novo methylation and more strongly correlated with gene expression. These changes took place in CpG-poor regions and were closely associated with T-cell differentiation and TCR function. Up to 88 genes that encode transcriptional regulators, some of whose functions in T-cell development are as yet unknown, were differentially methylated during differentiation. Interestingly, no reversion of accumulated DNA methylation changes was observed as differentiation progressed, except in a very small subset of key genes (RAG1, RAG2, CD8A, PTCRA, etc.), indicating that methylation changes are mostly unique and irreversible events. Our study explores the contribution of DNA methylation to T-cell lymphopoiesis and provides a fine-scale map of differentially methylated regions associated with gene expression changes. These can lay the molecular foundations for a better interpretation of the regulatory networks driving human thymopoiesis.


Subject(s)
DNA Methylation , Gene Expression Regulation , Receptors, Antigen, T-Cell, alpha-beta/analysis , T-Lymphocytes/immunology , Transcription, Genetic , Cell Differentiation/genetics , Gene Expression , Humans , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Thymocytes/cytology , Thymus Gland/cytology , Thymus Gland/immunology , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...