Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
Mol Genet Metab ; 142(1): 108361, 2024 May.
Article in English | MEDLINE | ID: mdl-38442492

ABSTRACT

INTRODUCTION: Phenylketonuria (PKU) requires regular phenylalanine monitoring to ensure optimal outcome. However, home sampling methods used for monitoring suffer high pre-analytical variability, inter-laboratory variability and turn-around-times, highlighting the need for alternative methods of home sampling or monitoring. METHODS: A survey was distributed through email and social media to (parents of) PKU patients and professionals working in inherited metabolic diseases in Denmark, The Netherlands, and United Kingdom regarding satisfaction with current home sampling methods and expectations for future point-of-care testing (POCT). RESULTS: 210 parents, 156 patients and 95 professionals completed the survey. Countries, and parents and patients were analysed together, in absence of significant group differences for most questions. Important results are: 1) Many patients take less home samples than advised. 2) The majority of (parents of) PKU patients are (somewhat) dissatisfied with their home sampling method, especially with turn-around-times (3-5 days). 3) 37% of professionals are dissatisfied with their home sampling method and 45% with the turn-around-times. 4) All responders are positive towards developments for POCT: 97% (n = 332) of (parents of) patients is willing to use a POC-device and 76% (n = 61) of professionals would recommend their patients to use a POC-device. 5) Concerns from all participants for future POC-devices are costs/reimbursements and accuracy, and to professionals specifically, accessibility to results, over-testing, patient anxiety, and patients adjusting their diet without consultation. CONCLUSION: The PKU community is (somewhat) dissatisfied with current home sampling methods, highlighting the need for alternatives of Phe monitoring. POCT might be such an alternative and the community is eager for its arrival.


Subject(s)
Parents , Phenylketonurias , Point-of-Care Testing , Humans , Phenylketonurias/diagnosis , Phenylketonurias/blood , Male , Female , Surveys and Questionnaires , Parents/psychology , Blood Specimen Collection , United Kingdom , Netherlands , Adult , Patient Satisfaction , Phenylalanine/blood , Denmark , Child , Adolescent
2.
Mol Genet Metab ; 141(1): 108120, 2024 01.
Article in English | MEDLINE | ID: mdl-38159545

ABSTRACT

Phenylketonuria (PKU) is a genetic disorder that follows an autosomal recessive inheritance pattern. Dietary treatment is the cornerstone of therapy and is based on natural protein restriction, Phe-free L-amino acid supplements (protein substitutes) and low protein foods. The aim of this project was to collect information about the clinical management of patients with PKU, focusing on understudied or unresolved issues such as blood phenylalanine (Phe) fluctuations and clinical symptoms, particularly gastro intestinal (GI) discomfort and sleep problems. The survey consisted of 10 open-ended and 12 multiple-choice questions that collected information about size of the PKU population in each center, the center's clinical practices and the outcomes observed by the center concerning adherence, clinical and biochemical abnormalities and clinical symptoms (GI and sleep). The questionnaire was sent to 72 experts from metabolic centers in 11 European countries. Thirty-three centers answered. The results of this survey provide information about the clinical practice in different age groups, concentrating on dietary tolerance, treatment adherence, and metabolic control. All the centers prescribed a Phe-restricted diet, with Phe-free/low Phe protein substitutes and low protein foods. Daily doses given of protein substitutes varied from 1 to 5, with adherence to the prescribed amounts decreasing with increasing age. Respondents identified that improvement in the flavor, taste, volume and smell of protein substitutes may improve adherence. Finally, the survey showed that clinical symptoms, such as GI discomfort and sleep problems occur in patients with PKU but are not systematically evaluated. Twenty-four-hour Phe fluctuations were not routinely assessed. The results highlight a strong heterogeneity of approach to management despite international PKU guidelines. More clinical attention should be given to gastrointestinal and sleep problems in PKU.


Subject(s)
Phenylketonurias , Sleep Wake Disorders , Humans , Phenylketonurias/diagnosis , Surveys and Questionnaires , Diet, Protein-Restricted , Europe , Phenylalanine
3.
Curr Opin Clin Nutr Metab Care ; 27(1): 31-39, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38085662

ABSTRACT

PURPOSE OF REVIEW: Casein glycomacropeptide (CGMP) is a milk-derived bioactive sialyated phosphorylated peptide with distinctive nutritional and nutraceutical properties, produced during the cheese making process. It comprises 20-25% of total protein in whey products. CGMP is low in phenylalanine (Phe) and provides an alternative to Phe-free amino acids as a source of protein equivalent for patients with phenylketonuria (PKU). The amino acid sequence of CGMP is adapted by adding the amino acids histidine, leucine, tyrosine, arginine and tryptophan to enable its suitability in PKU. CGMP has potential antibacterial, antioxidative, prebiotic, remineralizing, digestion /metabolism and immune-modulating properties. The aim of this review is to assess the evidence for the role of CGMP in the management of PKU. RECENT FINDINGS: In PKU, there is no agreement concerning the amino acid composition of CGMP protein substitutes and consequently the nutritional composition varies between products. Although there is evidence in patients or animal models that CGMP has possible beneficial effects on gut microbiota and bone health, the results are inconclusive. Data on kinetic advantage is limited. Most studies report an increase in blood Phe levels with CGMP. Appropriate adaptations and reduction of dietary Phe intake should be made to compensate for the residual Phe content of CGMP, particularly in children. Data from short term studies indicate improved palatability of CGMP when compared to Phe-free amino acids. SUMMARY: In PKU, CGMP with supplementary amino acids, offers a safe low Phe nitrogen source. Current scientific evidence is unconvincing about its bioactive advantage in PKU. Further longitudinal research is necessary.


Subject(s)
Caseins , Phenylketonurias , Child , Animals , Humans , Dietary Supplements , Amino Acids , Phenylketonurias/drug therapy , Phenylketonurias/metabolism , Phenylalanine/metabolism
4.
Nutrients ; 15(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38068741

ABSTRACT

In PKU, the protein requirements are contentious. In 2018, we evaluated the protein intake in patients with PKU. Ninety-nine early treated patients aged 19.3 ± 8.2 years (54% males) were studied. A total of 24 had hyperphenylalaninemia (HPA), 48 mild and 27 classical PKU. All had an annual nutritional status evaluation. A total of 83% were on diet therapy only, and 17% were on diet with tetrahydrobiopterin therapy. Anthropometry, metabolic control and nutritional intake [total protein (TP, g/kg), natural protein (NP, g/kg), protein equivalent from protein substitutes (PE, g/kg)] were collected. TP adequacy (TPA) was calculated as a % of WHO (2007) safe levels of protein intake. Results were compared with the European PKU Guidelines (EPG). The median % contribution NP of TP intake was 53% [31-100]. Most patients (78%) had a TP intake above the EPG recommendations. The median TPA was 171% [146-203], with 79% [51-165] from NP and 84% [0-109] from PE. A TPA of 100-140% was observed in 16 (16%) patients. Only n = 6 (6%) patients had a TPA < 100%. These results emphasize the heterogeneity of PKU. More research is needed to understand the necessity of a single protein recommendation for all, as a 'one-size-fits-all' solution might not be appropriate.


Subject(s)
Phenylalanine , Phenylketonurias , Male , Humans , Female , Nutritional Status , Diet , Anthropometry
5.
Nutrients ; 15(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38068761

ABSTRACT

In phenylketonuria (PKU), an important component of the UK dietary management system is a 50 mg phenylalanine (Phe)/1 g protein exchange system used to allocate the Phe/natural protein intakes according to individual patient tolerance. Any foods containing protein ≤ 0.5 g/100 g or fruits/vegetables containing Phe ≤ 75 mg/100 g are allowed without measurement or limit. In children with PKU, we aimed to assess the difference between the prescribed natural protein intake and their actual consumed intake, and to calculate the natural protein/Phe intake from foods given without measurement or restriction. Over a 6-month duration, three one-day diet diaries were collected every month by caregivers of children with PKU at the beginning of a follow-up study. Dietary intakes of Phe, as well as natural and total protein intakes, were calculated using Nutritics® (v5.09). Weekly blood Phe spots were collected by caregivers. The target blood Phe level was ≤360 µmol/L for ages up to 12 years and ≤600 µmol/L for ages ≥12 years. Sixteen early treated children (69% females) with PKU were recruited. The median age was 11 years (range: 9-13), and most had classical PKU (n = 14/16). A median of 18 (range 12-18) one-day diaries and 22 blood spots were analysed for each subject over 6 months. The median prescribed natural protein was 6 g/day (range: 3-27), but when calculated, the actual median intake from all foods consumed was 10 g/day (range: 4-37). The median prescribed Phe was 300 mg/day (range: 150-1350), but the actual median intake was 500 mg/day (range: 200-1850). The median difference between the prescribed and actual natural protein daily intakes was +4 g/day (range: -2.5 to +11.5), with a median percentage increase of 40% for natural protein/Phe intake (p < 0.001). The median blood Phe level was 250 µmol/L (range 20-750), with 91% of blood Phe levels within the target range. Only one patient (11 years) had less than 75% of their blood Phe levels within the target range. The UK Phe exchange system provides flexibility in the dietary management of PKU. With this method, the actual natural protein intake was 167% higher than the prescribed amount. Although this led to a variable daily protein intake, the majority of children (n = 15/16) experienced no deterioration in their metabolic control.


Subject(s)
Phenylketonurias , Child , Female , Humans , Male , Follow-Up Studies , Diet , Phenylalanine , Prescriptions
6.
Article in English | MEDLINE | ID: mdl-38085643

ABSTRACT

PURPOSE OF REVIEW: Casein glycomacropeptide (CGMP) is a milk-derived bioactive sialyated phosphorylated peptide with distinctive nutritional and nutraceutical properties, produced during the cheese making process. It comprises 20-25% of total protein in whey products. CGMP is low in phenylalanine (Phe) and provides an alternative to Phe-free amino acids as a source of protein equivalent for patients with phenylketonuria (PKU). The amino acid sequence of CGMP is adapted by adding the amino acids histidine, leucine, tyrosine, arginine and tryptophan to enable its suitability in PKU. CGMP has potential antibacterial, antioxidative, prebiotic, remineralizing, digestion /metabolism and immune-modulating properties. The aim of this review is to assess the evidence for the role of CGMP in the management of PKU. RECENT FINDINGS: In PKU, there is no agreement concerning the amino acid composition of CGMP protein substitutes and consequently the nutritional composition varies between products. Although there is evidence in patients or animal models that CGMP has possible beneficial effects on gut microbiota and bone health, the results are inconclusive. Data on kinetic advantage is limited. Most studies report an increase in blood Phe levels with CGMP. Appropriate adaptations and reduction of dietary Phe intake should be made to compensate for the residual Phe content of CGMP, particularly in children. Data from short term studies indicate improved palatability of CGMP when compared to Phe-free amino acids. SUMMARY: In PKU, CGMP with supplementary amino acids, offers a safe low Phe nitrogen source. Current scientific evidence is unconvincing about its bioactive advantage in PKU. Further longitudinal research is necessary.

7.
Nutrients ; 15(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38140392

ABSTRACT

Cardiovascular diseases are the main cause of mortality worldwide. Patients with phenylketonuria (PKU) may be at increased cardiovascular risk. This review provides an overview of clinical and metabolic cardiovascular risk factors, explores the connections between body composition (including fat mass and ectopic fat) and cardiovascular risk, and examines various methods for evaluating body composition. It particularly focuses on nutritional ultrasound, given its emerging availability and practical utility in clinical settings. Possible causes of increased cardiometabolic risk in PKU are also explored, including an increased intake of carbohydrates, chronic exposure to amino acids, and characteristics of microbiota. It is important to evaluate cardiovascular risk factors and body composition in patients with PKU. We suggest systematic monitoring of body composition to develop nutritional management and hydration strategies to optimize performance within the limits of nutritional therapy.


Subject(s)
Cardiovascular Diseases , Phenylketonurias , Humans , Anthropometry , Body Composition , Cardiovascular Diseases/etiology , Biomarkers , Phenylketonurias/complications , Body Mass Index
8.
Nutrients ; 15(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37892429

ABSTRACT

Adults with PKU require life-long management, and ideally, their care should be in a specialised adult metabolic clinic. Their outcomes and co-morbidities have received much attention, but data are lacking on their experience, satisfaction and expectations about the care they receive. This survey reports the experiences and care adults with PKU receive from specialist metabolic clinics in the UK. The online survey developed by the UK NSPKU (National Society for Phenylketonuria), was placed on the NSPKU website from February 2021 to December 2022, and was completed by adults with PKU (≥18 years) or their carers/family members. Sixty-five adult PKU patients and 9 caregivers of adult patients completed the questionnaire (63% female in total). Only 32% of respondents were following a Phe-restricted diet with protein substitute intake as prescribed; the rest were partially adherent or not on dietary restrictions. Nineteen per cent (n = 14/74) had not been reviewed in clinic for two years. Half of the respondents (50%) described their experience in adult clinics as "good". Half of the patients were unable to contact their dietitians with questions or concerns, and only 24% considered that they received adequate support. Clinic reviews usually included anthropometric (82%) and dietary assessments (64%), discussion on management of PKU in daily life (78%) and a blood test (71%). Eighty-eight per cent reported they had at least one neurocognitive, mental health or behavioural co-morbidity but less than half of the patients reported an assessment on their neurocognitive functioning or mental health issues. Adult male patients appeared to have less detailed clinic review than females. Less than half (44%) of the respondents reported that they performed a blood spot for blood Phe at least monthly, but only 32% considered they had been informed about the risk of high Phe levels in adulthood. Although time, cost and stress related to travelling were barriers to a face-to-face review, more than 40% of patients had concerns about remote appointments. The frequency and extent of monitoring of adults with PKU, attending specialist adult services, were less than those specified by the PKU European guidelines. The care of women of reproductive age is prioritised over men. Adult metabolic health services require further attention, development and resources to provide a high standard and equitable service to patients with PKU.


Subject(s)
Phenylketonurias , Adult , Humans , Male , Female , Surveys and Questionnaires , Caregivers , Family , United Kingdom
9.
Nutrients ; 15(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37630696

ABSTRACT

In phenylketonuria (PKU), natural protein tolerance is defined as the maximum natural protein intake maintaining a blood phenylalanine (Phe) concentration within a target therapeutic range. Tolerance is affected by several factors, and it may differ throughout a person's lifespan. Data on lifelong Phe/natural protein tolerance are limited and mostly reported in studies with low subject numbers. This systematic review aimed to investigate how Phe/natural protein tolerance changes from birth to adulthood in well-controlled patients with PKU on a Phe-restricted diet. Five electronic databases were searched for articles published until July 2020. From a total of 1334 results, 37 articles met the eligibility criteria (n = 2464 patients), and 18 were included in the meta-analysis. The mean Phe (mg/day) and natural protein (g/day) intake gradually increased from birth until 6 y (at the age of 6 months, the mean Phe intake was 267 mg/day, and natural protein intake was 5.4 g/day; at the age of 5 y, the mean Phe intake was 377 mg/day, and the natural protein intake was 8.9 g/day). However, an increase in Phe/natural protein tolerance was more apparent at the beginning of late childhood and was >1.5-fold that of the Phe tolerance in early childhood. During the pubertal growth spurt, the mean natural protein/Phe tolerance was approximately three times higher than in the first year of life, reaching a mean Phe intake of 709 mg/day and a mean natural protein intake of 18 g/day. Post adolescence, a pooled analysis could only be performed for natural protein intake. The mean natural protein tolerance reached its highest (32.4 g/day) point at the age of 17 y and remained consistent (31.6 g/day) in adulthood, but limited data were available. The results of the meta-analysis showed that Phe/natural protein tolerance (expressed as mg or g per day) increases with age, particularly at the beginning of puberty, and reaches its highest level at the end of adolescence. This needs to be interpreted with caution as limited data were available in adult patients. There was also a high degree of heterogeneity between studies due to differences in sample size, the severity of PKU, and target therapeutic levels for blood Phe control.


Subject(s)
Phenylalanine , Phenylketonurias , Child , Child, Preschool , Adolescent , Adult , Humans , Infant , Databases, Factual , Immune Tolerance , Longevity
10.
Nutrients ; 15(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37630769

ABSTRACT

(1) Background: Good adherence to a Phe-restricted diet supplemented with an adequate amount of a protein substitute (PS) is important for good clinical outcomes in PKU. Glycomacropeptide (cGMP)-PSs are innovative, palatable alternatives to amino acid-based PSs (AA-PS). This study aimed to evaluate a new cGMP-PS in liquid and powder formats in PKU. (2) Methods: Children and adults with PKU recruited from eight centres were prescribed at least one serving/day of cGMP-PS for 7-28 days. Adherence, acceptability, and gastrointestinal tolerance were recorded at baseline and the end of the intervention. The blood Phe levels reported as part of routine care during the intervention were recorded. (3) Results: In total, 23 patients (powder group, n = 13; liquid group, n = 10) completed the study. The majority assessed the products to be palatable (77% of powder group; 100% of liquid group) and well tolerated; the adherence to the product prescription was good. A total of 14 patients provided blood Phe results during the intervention, which were within the target therapeutic range for most patients (n = 11) at baseline and during the intervention. (4) Conclusions: These new cGMP-PSs were well accepted and tolerated, and their use did not adversely affect blood Phe control.


Subject(s)
Caseins , Peptide Fragments , Adult , Child , Humans , Powders , Dietary Supplements , Cyclic GMP
11.
Nutrients ; 15(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37630788

ABSTRACT

(1) Background: Poor palatability, large volume, and lack of variety of some liquid and powdered protein substitutes (PSs) for patients with phenylketonuria (PKU) and tyrosinemia (TYR) can result in poor adherence. This study aimed to evaluate a new unflavoured, powdered GMP-based PS designed to be mixed into drinks, foods, or with other PSs, in patients with PKU and TYR. (2) Methods: Paediatric and adult community-based patients were recruited from eight metabolic centres and prescribed ≥1 sachet/day (10 g protein equivalent (PE)) of the Mix-In-style PS over 28 days. Adherence, palatability, GI tolerance, and metabolic control were recorded at baseline and follow-up. Patients who completed at least 7 days of intervention were included in the final analysis. (3) Results: Eighteen patients (3-45 years, nine males) with PKU (n = 12) and TYR (n = 6) used the Mix-In-style PS for ≥7 days (mean 26.4 days (SD 4.6), range 11-28 days) alongside their previous PS, with a mean intake of 16.7 g (SD 7.7) PE/day. Adherence was 86% (SD 25), and GI tolerance was stable, with n = 14 experiencing no/no new symptoms and n = 3 showing improved symptoms compared to baseline. Overall palatability was rated satisfactory by 78% of patients, who successfully used the Mix-In-style PS in various foods and drinks, including smoothies, squash, and milk alternatives, as a top-up to meet their protein needs. There was no concern regarding safety/metabolic control during the intervention. (4) Conclusions: The 'Mix-In'-style PS was well adhered to, accepted, and tolerated. Collectively, these data show that providing a flexible, convenient, and novel format of PS can help with adherence and meet patients' protein needs.


Subject(s)
Phenylketonurias , Tyrosinemias , Glycoproteins/adverse effects , Glycoproteins/therapeutic use , Glycopeptides/adverse effects , Glycopeptides/therapeutic use , Phenylketonurias/diet therapy , Humans , Male , Female , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Tyrosinemias/diet therapy , Treatment Outcome , Gastrointestinal Tract/metabolism , Food , Beverages
12.
Nutrients ; 15(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37630793

ABSTRACT

INTRODUCTION: In phenylketonuria (PKU) changes in dietary patterns and behaviors in sapropterin-responsive populations have not been widely reported. We aimed to assess changes in food quality, mental health and burden of care in a paediatric PKU sapropterin-responsive cohort. METHODS: In an observational, longitudinal study, patient questionnaires on food frequency, neophobia, anxiety and depression, impact on family and burden of care were applied at baseline, 3 and 6-months post successful sapropterin-responsiveness testing (defined as a 30% reduction in blood phenylalanine levels). RESULTS: 17 children (10.8 ± 4.2 years) completed 6-months follow-up. Patients body mass index (BMI) z-scores remained unchanged after sapropterin initiation. Blood phenylalanine was stable. Natural protein increased (p < 0.001) and protein substitute intake decreased (p = 0.002). There were increases in regular cow's milk (p = 0.001), meat/fish, eggs (p = 0.005), bread (p = 0.01) and pasta (p = 0.011) intakes but special low-protein foods intake decreased. Anxiety (p = 0.016) and depression (p = 0.022) decreased in caregivers. The impact-on-family, familial-social impact (p = 0.002) and personal strain (p = 0.001) lessened. After sapropterin, caregivers spent less time on PKU tasks, the majority ate meals outside the home more regularly and fewer caregivers had to deny food choices to their children. CONCLUSION: There were significant positive changes in food patterns, behaviors and burden of care in children with PKU and their families after 6-months on sapropterin treatment.


Subject(s)
Diet , Phenylketonurias , Animals , Cattle , Female , Bread , Follow-Up Studies , Longitudinal Studies , Phenylketonurias/drug therapy
13.
Molecules ; 28(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37446577

ABSTRACT

Phenylketonuria (PKU) is a rare metabolic disorder caused by mutations in the phenylalanine hydroxylase gene. Depending on the severity of the genetic mutation, medical treatment, and patient dietary management, elevated phenylalanine (Phe) may occur in blood and brain tissues. Research has recently shown that high Phe not only impacts the central nervous system, but also other organ systems (e.g., heart and microbiome). This study used ex vivo proton nuclear magnetic resonance (1H-NMR) analysis of urine samples from PKU patients (mean 14.9 ± 9.2 years, n = 51) to identify the impact of elevated blood Phe and PKU treatment on metabolic profiles. Our results found that 24 out of 98 urinary metabolites showed a significant difference (p < 0.05) for PKU patients compared to age-matched healthy controls (n = 51) based on an analysis of urinary metabolome. These altered urinary metabolites were related to Phe metabolism, dysbiosis, creatine synthesis or intake, the tricarboxylic acid (TCA) cycle, end products of nicotinamide-adenine dinucleotide degradation, and metabolites associated with a low Phe diet. There was an excellent correlation between the metabolome and genotype of PKU patients and healthy controls of 96.7% in a confusion matrix model. Metabolomic investigations may contribute to a better understanding of PKU pathophysiology.


Subject(s)
Phenylketonurias , Humans , Proton Magnetic Resonance Spectroscopy , Phenylketonurias/genetics , Phenotype , Genotype , Magnetic Resonance Spectroscopy , Phenylalanine/genetics
14.
Nutrients ; 15(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37447372

ABSTRACT

In phenylketonuria (PKU), a previous intervention study assessing the patients ability to tolerate fruits and vegetables containing phenylalanine 76-100 mg/100 g without limit or measurement, found that an extra 50 mg/day phenylalanine, but not 100 mg/day, was tolerated from these fruits and vegetables. In a further 6-month extension study, we examined the effect of the 'free' use of this group of fruits and vegetables on blood phenylalanine control. For 6 months, the patients ate fruits and vegetables containing phenylalanine 76-100 mg/100 g without limit or measurement. Three-day diet diaries and the patients' weights were collected monthly. Blood phenylalanine spots were collected weekly aiming for blood phenylalanine levels <360 µmol/L. Retrospective blood phenylalanine was collected 6 months pre-trial. All 16 patients (69% females) from the intervention study took part in the extension study. Most of the patients (n = 14/16) had classical PKU with a median age of 10.5 years (range: 6-13). There was no statistically significant difference in the median blood phenylalanine pre-study (270, range: 50-760 µmol/L) compared to the 6-month extension study (250, range: 20-750 µmol/L) (p= 0.4867). The patients had a median of 21 and 22 bloodspots, pre- and post-trial, respectively. In the extension study, the patients had an actual mean intake of 11 g/day (4-37) natural protein and 65 g/day (60-80) protein equivalent from a protein substitute. The mean phenylalanine intake was 563 mg/day (200-1850) with only 19 mg/day (0-146) phenylalanine from fruits and vegetables containing phenylalanine 76-100 mg/100 g. The weight z-scores remained unchanged (1.52 vs. 1.60, p = 0.4715). There was no adverse impact on blood phenylalanine control when fruits and vegetables containing phenylalanine 76-100 mg/100 g were eaten without limit or measurement. However, the fruits and vegetable portion sizes eaten were small (60 g/week). Further longitudinal work is necessary to examine the 'free' use of fruits and vegetables containing phenylalanine 76-100 mg/100 g on metabolic control in patients with PKU.


Subject(s)
Phenylketonurias , Vegetables , Female , Humans , Child , Adolescent , Male , Fruit , Phenylalanine , Retrospective Studies , Follow-Up Studies , Preliminary Data
15.
Nutrients ; 15(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37242212

ABSTRACT

BACKGROUND: A diagnosis of phenylketonuria (PKU) in an infant is a devastating and overwhelming event for their parents. Providing appropriate information and support is paramount, especially at the beginning of a child's life. Investigating if parents are receiving the right support is important for continued care. METHODOLOGY: An online survey was distributed to explore parents' perceptions of current support and information provided by their healthcare provider and to rate sources of other support (n = 169 participants). RESULTS: Dietitians received the highest (85%) rate of "very helpful" support. Overall, parents found Facebook to be helpful for support but had mixed reactions when asked if healthcare professionals (HCPs) should provide advice as part of the groups. When rating the most effective learning methods, the top three were 1:1 teaching sessions (n = 109, 70%), picture books (n = 73, 50%), and written handouts (n = 70, 46%). CONCLUSION: Most parents are happy with the support and information they receive from their dietitian but required more support from other HCPs. Facebook groups provide parents with the social support that HCPs and their family may be unable to offer, suggesting a place for social media in future PKU care.


Subject(s)
Nutritionists , Phenylketonurias , Child , Humans , Infant , Parents , Health Personnel , Perception
16.
Nutrients ; 15(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37242270

ABSTRACT

A low amino acid (AA)/protein diet is the principal treatment for many inherited amino acid disorders (IMDs). Due to their low AA content, plant foods constitute an essential part of diet therapy. However, data on their AA composition are limited, which leads to an estimation of AA intake from protein content rather than an accurate calculation of true AA intake. This study describes the AA content of a total of 73 plant foods (fruits, n = 12; vegetables, n = 51; and other plant foods, n = 10), with the analysis commissioned by the UK National Society for Phenylketonuria (NSPKU) over 15 years. For all fruits and some vegetables (e.g., rocket, watercress and pea shoots), raw samples were used during analysis. All other vegetables were cooked prior to analysis to represent the usual condition of the food at the time of serving. AA analysis was performed with ion exchange chromatography. The median percentage of protein was 2.0% [0.6-5.4%] for the fruits and vegetables analysed (n = 56), although higher in vegetables than in fruits. Each of the five reported AAs (leucine, lysine, phenylalanine, tyrosine, and methionine) supplied 1-5% per g of protein content. From the heterogeneous range of plant foods analysed, the AA/protein ratios differed significantly (2-5% in fruits and 1-9% in vegetables). There was a strong correlation between the amounts of each of the five AAs in the plant foods, but only a small, moderate correlation between the protein and AA content. Overall, this study provides data on the AA content of several plant foods, which are suitable for patients treated with a low AA/protein diet, including many novel plant options. However, only a limited range of fruits and vegetables were analysed due to the high costs of analysis. Hence, more extensive studies with an increased number of plant foods prepared by different cooking methods and replicate samples are necessary, particularly to examine the relationship between the protein and AA content in depth.


Subject(s)
Amino Acids , Vegetables , Humans , Amino Acids/analysis , Vegetables/chemistry , Fruit/chemistry , Plants , Diet, Protein-Restricted , Diet
17.
Orphanet J Rare Dis ; 18(1): 16, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36698214

ABSTRACT

BACKGROUND: Phenylalanine-free infant formula is an essential source of safe protein in a phenylalanine restricted diet, but its efficacy is rarely studied. We report a multicentre, open, longitudinal, prospective intervention study on a phenylalanine-free infant formula (PKU Start: Vitaflo International Ltd.). RESULTS: This was a 2-part study: part I (28 days short term evaluation) and part II (12 months extension). Data was collected on infant blood phenylalanine concentrations, dietary intake, growth, and gastrointestinal tolerance. Ten infants (n = 8 males, 80%), with a median age of 14 weeks (range 4-36 weeks) were recruited from 3 treatment centres in the UK. Nine of ten infants completed the 28-day follow-up (one caregiver preferred the usual phenylalanine-free formula and discontinued the study formula after day 14) and 7/9 participated in study part II. The phenylalanine-free infant formula contributed a median of 57% (IQR 50-62%) energy and 53% (IQR 33-66%) of total protein intake from baseline to the end of the part II extension study. During the 12-month follow-up, infants maintained normal growth and satisfactory blood phenylalanine control. Any early gastrointestinal symptoms (constipation, colic, vomiting and poor feeding) improved with time. CONCLUSION: The study formula was well tolerated, helped maintain good metabolic control, and normal growth in infants with PKU. The long-term efficacy of phenylalanine-free infant formula should continue to be observed and monitored.


Subject(s)
Infant Formula , Phenylketonurias , Infant , Male , Humans , Prospective Studies , Phenylalanine , Proteins
18.
Nutrients ; 14(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36558364

ABSTRACT

In the UK, different dietary systems are used to calculate protein or tyrosine/phenylalanine intake in the dietary management of hereditary tyrosinaemia, HTI, II and III (HT), with no systematic evidence comparing the merits and inadequacies of each. This study aimed to examine the current UK dietary practices in all HTs and, using Delphi methodology, to reach consensus agreement about the best dietary management system. Over 12 months, five meetings were held with UK paediatric and adult dietitians working in inherited metabolic disorders (IMDs) managing HTs. Eleven statements on the dietary system for calculating protein or tyrosine/phenylalanine intake were discussed. Dietitians from 12 of 14 IMD centres caring for HT patients participated, and 7/11 statements were agreed with one Delphi round. Nine centres (three abstentions) supported a 1 g protein exchange system for all foods except fruit and vegetables. The same definitions used in the UK for phenylketonuria (PKU) were adopted to define when to calculate foods as part of a protein exchange system or permit them without measurement. Fruit and vegetables contain a lower amount of tyrosine/phenylalanine per 1 g of protein than animal and cereal foods. The correlation of tyrosine vs. phenylalanine (mg/100 g) for vegetables and fruits was high (r = 0.9). In Delphi round 2, agreement was reached to use the tyrosine/phenylalanine analyses of fruits/vegetables, for their allocation within the HT diet. This allowed larger portion sizes of measured fruits and vegetables and increased the variety of fruit and vegetables that could be eaten without measurement. In HTs, a combined dietary management system will be used: 1 g protein exchanges for cereal and milk protein sources and tyrosine/phenylalanine exchanges for fruit and vegetables. Intensive, systematic communication with IMD dietitians and reappraisal of the evidence has redefined and harmonised HT dietary practice across the UK.


Subject(s)
Tyrosinemias , Diet , Vegetables , Fruit , Phenylalanine , United Kingdom
19.
Nutrients ; 14(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36501017

ABSTRACT

Introduction: There is little practical guidance about suitable food choices for higher natural protein tolerances in patients with phenylketonuria (PKU). This is particularly important to consider with the introduction of adjunct pharmaceutical treatments that may improve protein tolerance. Aim: To develop a set of guidelines for the introduction of higher protein foods into the diets of patients with PKU who tolerate >10 g/day of protein. Methods: In January 2022, a 26-item food group questionnaire, listing a range of foods containing protein from 5 to >20 g/100 g, was sent to all British Inherited Metabolic Disease Group (BIMDG) dietitians (n = 80; 26 Inherited Metabolic Disease [IMD] centres). They were asked to consider within their IMD dietetic team when they would recommend introducing each of the 26 protein-containing food groups into a patient's diet who tolerated >10 g to 60 g/day of protein. The patient protein tolerance for each food group that received the majority vote from IMD dietetic teams was chosen as its tolerance threshold for introduction. A virtual meeting was held using Delphi methodology in March 2022 to discuss and agree final consensus. Results: Responses were received from dietitians from 22/26 IMD centres (85%) (11 paediatric, 11 adult). For patients tolerating protein ≥15 g/day, the following foods were agreed for inclusion: gluten-free pastas, gluten-free flours, regular bread, cheese spreads, soft cheese, and lentils in brine; for protein tolerance ≥20 g/day: nuts, hard cheeses, regular flours, meat/fish, and plant-based alternative products (containing 5−10 g/100 g protein), regular pasta, seeds, eggs, dried legumes, and yeast extract spreads were added; for protein tolerance ≥30 g/day: meat/fish and plant-based alternative products (containing >10−20 g/100 g protein) were added; and for protein tolerance ≥40 g/day: meat/fish and plant-based alternatives (containing >20 g/100 g protein) were added. Conclusion: This UK consensus by IMD dietitians from 22 UK centres describes for the first time the suitability and allocation of higher protein foods according to individual patient protein tolerance. It provides valuable guidance for health professionals to enable them to standardize practice and give rational advice to patients.


Subject(s)
Phenylketonurias , Animals , Consensus , Diet , Meat , United Kingdom
20.
JIMD Rep ; 63(6): 555-562, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36341173

ABSTRACT

In maple syrup urine disease (MSUD), leucine (Leu) accumulation, and its metabolites cause brain toxicity, and at diagnosis rapid plasma Leu reduction is essential. Valine (Val) and isoleucine (Iso) supplements are necessary to promote anabolism and enable prompt reduction of plasma Leu. Val/Iso supplements are unavailable in Iran, so an alternative source was necessary. An emergency protocol was developed using an unconventional source of Val and Iso to prompt reduction of high plasma Leu levels during an acute metabolic crisis to prevent brain encephalopathy and neurological sequelae. Five children with classical MSUD were referred aged 1-25 months, with a prolonged high plasma Leu of more than 1500 µmol/L and acute symptoms (irritability, poor feeding, and hypotonia). Initially, breast milk/regular infant formula was stopped. Val and Iso were given in calculated amounts from a Leu-free formula containing Iso/Val (Xleu Maxamaid, Nutricia Ltd.) to promote anabolism. It was prescribed for a controlled and limited time with a branched chain amino acid (BCAA) free formula. Frequent amino acid monitoring was conducted. Natural protein was re-added after normalizing plasma Leu. Plasma Leu declined by a median (range) of 1677 (1501-1852) µmol/L within 3-4 days of intervention. The median follow-up time was 24 months (range: 14-32) and patients showed improvement in motor and cognitive skills after normalizing plasma Leu (75-200 µmol/L). Most had improvement in their head circumference (n = 4). Due to the unavailability of individual Val/Iso supplements, a Leu-free formula rapidly lowered plasma Leu concentrations during acute crisis, to prevent cerebral edema and brain damage in MSUD.

SELECTION OF CITATIONS
SEARCH DETAIL
...