Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Adv Funct Mater ; 25(3): 409-420, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25866496

ABSTRACT

In this work, molecular tuning of metal xanthate precursors is shown to have a marked effect on the heterojunction morphology of hybrid poly(3-hexylthiophene-2,5-diyl) (P3HT)/CdS blends and, as a result, the photochemical processes and overall performance of in situ fabricated hybrid solar cells. A series of cadmium xanthate complexes is synthesized for use as in situ precursors to cadmium sulfide nanoparticles in hybrid P3HT/CdS solar cells. The formation of CdS domains is studied by simultaneous GIWAXS (grazing incidence wide-angle X-ray scattering) and GISAXS (grazing incidence small-angle X-ray scattering), revealing knowledge about crystal growth and the formation of different morphologies observed using TEM (transmission electron microscopy). These measurements show that there is a strong relationship between precursor structure and heterojunction nanomorphology. A combination of TAS (transient absorption spectroscopy) and photovoltaic device performance measurements is used to show the intricate balance required between charge photogeneration and percolated domains in order to effectively extract charges to maximize device power conversion efficiencies. This study presents a strong case for xanthate complexes as a useful route to designing optimal heterojunction morphologies for use in the emerging field of hybrid organic/inorganic solar cells, due to the fact that the nanomorphology can be tuned via careful design of these precursor materials.

3.
J Mater Chem A Mater ; 3(47): 24155-24162, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-27019713

ABSTRACT

Herein, we report on a solution based approach for the preparation of thin films of copper antimony sulfide, an emerging absorber material for third generation solar cells. In this work, copper and antimony xanthates are used as precursor materials for the formation of two different copper antimony sulfide phases: chalcostibite (CuSbS2) and tetrahedrite (Cu12Sb4S13). Both phases were thoroughly investigated regarding their structural and optical properties. Moreover, thin films of chalcostibite and tetrahedrite were prepared on mesoporous TiO2 layers and photoinduced charge transfer in these metal sulfide/TiO2 heterojunctions was studied via transient absorption spectroscopy. Photoinduced charge transfer was detected in both the chalcostibite as well as the tetrahedrite sample, which is an essential property in view of applying these materials as light-harvesting agents in semiconductor sensitized solar cells.

4.
Chemphyschem ; 15(6): 1019-23, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24596301

ABSTRACT

The fabrication of solution-processed nontoxic mesoporous Bi2S3 structures is demonstrated and the suitability of these structures for use in hybrid solar cells investigated. Mesoporous Bi2S3 electrodes are prepared via thermal decomposition of a thin film composed of a bismuth xanthate single source precursor. The resultant Bi2S3 films are made up of regular needles with approximate dimensions of 50×500 nm, as confirmed by scanning electron microscopy (SEM). The crystallinity of the Bi2S3 is found to be dependent on the annealing temperature, as determined by X-ray diffraction. The porous Bi2S3 films are infiltrated with the hole conductor P3HT to generate novel hybrid films, and laser-based transient absorption spectroscopy is used to interrogate the charge-separation reaction at the resulting Bi2S3/P3HT heterojunction. Specifically, optical excitation of the hybrid films results in efficient and long-lived charge separation (microsecond to millisecond timescale), thereby rendering such films suitable for the development of novel low-cost solar-energy conversion devices.

5.
Sci Rep ; 3: 1531, 2013.
Article in English | MEDLINE | ID: mdl-23524906

ABSTRACT

The dissociation of photogenerated excitons and the subsequent spatial separation of the charges are of crucial importance to the design of efficient donor-acceptor heterojunction solar cells. While huge progress has been made in understanding charge generation at all-organic junctions, the process in hybrid organic:inorganic systems has barely been addressed. Here, we explore the influence of energetic driving force and local crystallinity on the efficiency of charge pair generation at hybrid organic:inorganic semiconductor heterojunctions. We use x-ray diffraction, photoluminescence quenching, transient absorption spectroscopy, photovoltaic device and electroluminescence measurements to demonstrate that the dissociation of photogenerated polaron pairs at hybrid heterojunctions is assisted by the presence of crystalline electron acceptor domains. We propose that such domains encourage delocalization of the geminate pair state. The present findings suggest that the requirement for a large driving energy for charge separation is relaxed when a more crystalline electron acceptor is used.

6.
Phys Chem Chem Phys ; 14(47): 16192-6, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23132265

ABSTRACT

We introduce a straightforward route to the fabrication of metal sulfide semiconductor (e.g. CdS, Sb(2)S(3), Bi(2)S(3)) sensitised TiO(2) films. Our approach is based upon the controllable thermal decomposition of a single-source metal xanthate precursor on a mesoporous metal oxide film. The growth of the metal sulfide deposit is confirmed by Raman and UV-Vis steady-state absorption measurements. Transient absorption spectroscopy measurements provide evidence for charge separation across the metal sulfide/TiO(2) interface. Moreover, a high yield of long-lived photogenerated charges is observed in a three-component TiO(2)/metal sulfide/spiro-OMeTAD film, thus demonstrating the potential of such multicomponent films for solar energy conversion devices.

7.
ACS Nano ; 6(5): 3868-75, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22533706

ABSTRACT

The bis and tris adducts of [6,6]phenyl-C(61)-butyric acid methyl ester (PCBM) offer lower reduction potentials than PCBM and are therefore expected to offer larger open-circuit voltages and more efficient energy conversion when blended with conjugated polymers in photovoltaic devices in place of PCBM. However, poor photovoltaic device performances are commonly observed when PCBM is replaced with higher-adduct fullerenes. In this work, we use transmission electron microscopy (TEM), steady-state and ultrafast time-resolved photoluminescence spectroscopy (PL), and differential scanning calorimetry (DSC) to probe the microstructural properties of blend films of poly(3-hexylthiophene-2,5-diyl) (P3HT) with the bis and tris adducts of PCBM. TEM and PL indicate that, in as-spun blend films, fullerenes become less soluble in P3HT as the number of adducts increases. PL indicates that upon annealing crystallization leads to phase separation in P3HT:PCBM samples only. DSC studies indicate that the interactions between P3HT and the fullerene become weaker with higher-adduct fullerenes and that all systems exhibit eutectic phase behavior with a eutectic composition being shifted to higher molar fullerene content for higher-adduct fullerenes. We propose two different mechanisms of microstructure development for PCBM and higher-adduct fullerenes. P3HT:PCBM blends, phase segregation is the result of crystallization of either one or both components and is facilitated by thermal treatments. In contrast, for blends containing higher adducts, the phase separation is due to a partial demixing of the amorphous phases. We rationalize the lower photocurrent generation by the higher-adduct fullerene blends in terms of film microstructure.

8.
Nanoscale ; 4(5): 1561-4, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22307222

ABSTRACT

We demonstrate that blend films containing poly(3-hexylthiophene-2,5-diyl) and in situ grown CdS display a greater yield of photogenerated charges than a blend containing an equivalent amount of pre-synthesised CdS quantum dots. Moreover, we show that the greater charge yield in the in situ grown films leads to an improvement in device efficiency. The present findings also appear to suggest that charge photogeneration at the CdS/polymer heterojunction is facilitated by the formation of nanoparticle networks as a result of CdS aggregation.


Subject(s)
Cadmium Compounds/chemistry , Quantum Dots , Solar Energy , Sulfides/chemistry , Nanoparticles/chemistry , Oleic Acid/chemistry , Thiophenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...